Progress in Maritime Technology and Engineering

Editors

C. Guedes Soares
Centre for Marine Technology and Ocean Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Portugal

T.A. Santos
Ordem dos Engenheiros, Portugal
CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business

© 2018 Taylor & Francis Group, London, UK

Typeset by V Publishing Solutions Pvt Ltd., Chennai, India
Printed and bound in Great Britain by CPI Group (UK) Ltd, Croydon, CR0 4YY

All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the publisher.

Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers nor the author for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein.

Published by: CRC Press/Balkema
Schipholweg 107C, 2316 XC Leiden, The Netherlands
e-mail: Pub.NL@taylorandfrancis.com

ISBN: 978-1-138-58539-3 (Hbk + USB)
Table of contents

Preface xi
Organisation xiii

Port performance I
Comparative analysis of port performances between Italy and Brazil
A.N. Nascimento, A.M. Wahrhaftig & H.J.C. Ribeiro
Port of Santos, Brazil: Essential factors to implement a green port system
D.A. Moura & R.C. Botter
Evaluation of port performance: Research opportunities from the systemic analysis of international literature
G.C. Fermino, A. Dutra, L. Ensslin & S.R. Ensslin
Performance evaluation of the infrastructure of ports from Santa Catarina State

Port performance II
Improving capacity of port shunting yard
A. Rusca, F. Rusca, E. Rosca, V. Drăgu & M. Rosca
Analysis of a new container terminal using a simulation approach
N.A.S. Mathias, T.A. Santos & C. Guedes Soares
Operational and cost based analysis of ship to ship—transshipment in Brazil: An application to the iron ore in the port of Santos
P.C.M. Oliveira & R.C. Botter

Maritime transportation and economics
Evaluation of the Portuguese ocean economy using the Satellite Account for the Sea
A.S. Simões, M.R. Salvador & C. Guedes Soares
Motorways of the sea
J.-M. Laurens & P.-M. Guilcher
Characterizing the operation of a roll-on roll-off short sea shipping service
T.A. Santos, C. Guedes Soares & R.C. Botter

Big data in shipping
Fishing activity patterns for Portuguese seiners based on VMS data analysis
A. Campos, P. Fonseca, P. Lopes, J. Parente, N. Antunes & P. Lousã
Characterizing container ship traffic along the Portuguese coast using big data
R.C. Botter, T.A. Santos & C. Guedes Soares
Methodology for estimating technical characteristics of container ships from AIS data
T.A. Santos & C. Guedes Soares
Intelligent ship navigation

Challenges and developments of water transport safety under intelligent environment
H.B. Tian, B. Wu & X.P. Yan

Collision avoidance, guidance and control system for autonomous surface vehicles in complex navigation conditions
M.A. Hinostroza & C. Guedes Soares

A framework of network marine meteorological information processing and visualization for ship navigation
X. Peng, Y. Wen, C. Zhou & L. Huang

Role assignment and conflict identification for the encounter of ships under COLREGs
Y. Zeng, J.F. Zhang, A.P. Teixeira & C. Guedes Soares

Ship performance

Design related speed loss and fuel consumption of ships in seaways
M. Riesner, O. el Moctar & T.E. Schellin

Influence of main engine control strategies on fuel consumption and emissions
R. Vettor, M. Tadros, M. Ventura & C. Guedes Soares

Analysis of multipurpose ship performance accounting for SME shipyard building limitations
Y. Denev, P. Georgiev & Y. Garbatov

Computational fluid dynamics

Wake of a catamaran navigating in restricted waters
G.T.P. McSullea, J.M. Rodrigues & C. Guedes Soares

A CFD study of a ship moving with constant drift angle in calm water and waves
H. Islam & C. Guedes Soares

Ship self-propulsion performance prediction by using OpenFOAM and different simplified propeller models
S. Gaggero, T. Gaggero, G. Tani, G. Vernengo, M. Viviani & D. Villa

Resistance and propulsion

Experimental study of frictional drag reduction on a hull model by air-bubbling
E. Ravina & S. Guidomei

Procedure for production of scaled ship models for towing tank testing

A benchmark test of ship resistance in extremely shallow water
Q. Zeng, C. Thill & R. Hekkenberg

Ship propulsion

Optimization scheme for the selection of the propeller in ship concept design
M. Tadros, M. Ventura & C. Guedes Soares

Marine propulsion shafting: A study of whirling vibrations
S. Busquier, S. Martinez & M.J. Legaz

Dynamics and control

Assessment of the electric propulsion motor controller for the Colombian offshore patrol vessel
C. Morales, E. Insignares, B. Verma, D. Fuentes & M. Ruiz
Simulation of a marine dynamic positioning system equipped with cycloidal propellers
M. Altosole, S. Donnarumma, V. Spagnolo & S. Vignolo

Reliability analysis of dynamic positioning systems
M.V. Clavijo, M.R. Martins & A.M. Schleder

Marine pollution and sustainability
Sustainability in fishing vessel design process 1988–2018
F.A. Veenstra, J.A.A.M. Stoop & J.J. Hopman

Ballast water management: And now, what to do?
L. Guerrero, J. Pancorbo & J.A. Arias

Persistent organic pollutants in Baltic herring in the Gulf of Riga and Gulf of Finland (north-eastern Baltic Sea)
L. Järvi, T. Raid, M. Siumm, M. Radin, H. Kiviranta & P. Ruokojärvi

Ship design
Critical wind velocity for harbor container stability
A. Balbi, M.P. Repetto, G. Solari, A. Freda & G. Riotto

Tool for initial hull structure dimensioning at ship concept design
F. Sisci & M. Ventura

Conceptual design of multipurpose ship and fleet accounting for SME shipyard building limitations
T. Damyanliev, P. Georgiev, I. Atanasova & Y. Garbatov

Ship structures I
Analysis of the ultimate strength of corroded ships involved in collision accidents and subjected to biaxial bending
J.W. Ringsberg, Z. Li, A. Kuznecovs & E. Johnson

Residual strength assessment of a grounded container ship subjected to asymmetrical bending loads
M. Tekgoz, Y. Garbatov & C. Guedes Soares

Strength assessment of an aged single hull tanker grounded in mud and used as port oil storage
N. Vladimir, I. Senjanović, N. Alujević, S. Tomašević & D.S. Cho

Ship structures II
Failure assessment of transition piece of jacket offshore wind turbine
B. Yeter, Y. Garbatov & C. Guedes Soares

Low-cycle fatigue of damaged stiffened panel in ship structures
I. Gledić & J. Parunov

Failure assessment of wash plates with different degree of openings
S. Saad-Eldeen, Y. Garbatov & C. Guedes Soares

Structures in composite materials
Experimental and numerical structural analysis of a windsurf fin
F. Nascimento, L.S. Sutherland & Y. Garbatov

Uncertainty propagation and sensitivity analysis of a laminated composite beam
M. Calvário, A.P. Teixeira & C. Guedes Soares

Experimental study of the residual strength of damaged hybrid steel-FRP balcony overhangs of ships
N. Kharghani & C. Guedes Soares
Shipyard technology

Model to forecast times and costs of cutting, assembling and welding stages of construction of ship blocks
A. Oliveira & J.M. Gordo

Causal analysis of accidents at work in a shipyard complemented with Bayesian nets modelling
B. Costa, C. Jacinto, A.P. Teixeira & C. Guedes Soares

Analysis of SME ship repair yard capacity in building new ships
I. Atanasova, T. Damyanliev, P. Georgiev & Y. Garbatov

Shipyards of the 21st century: Industrial internet of things on site
V. Díaz-Casas, A. Munín Doce, P. Trueba Martínez, S. Ferreño Gonzalez & M. Vilar

Coating and corrosion

Internal corrosion simulation of long distance sandwich pipe
C. Hong, Y. Wang, J. Yang, S.F. Estefen & M.I. Lourenço

Ceramic coating solution for offshore structures
S. García, A. Trueba, L.M. Vega & E. Madariaga

Maintenance

Life cycle and cost performance analysis on ship structural maintenance strategy of a short route hybrid
H. Wang, E. Oguz, B. Jeong & P. Zhou

An integrated operational system to reduce O&M cost of offshore wind farms
K. Wang, X. Jiang, R.R. Negenborn, X. Yan & Y. Yuan

Ships on condition data driven maintenance management
S. Lampreia, V. Lobo, V. Vairinhos & J.G. Requeijo

Risk analysis

Risk analysis of ships & offshore wind turbines collision: Risk evaluation and case study
Q. Yu, X. Xin, K. Liu & J. Zhang

Risk analysis of innovative maritime transport solutions using the extended Failure Mode and Effects Analysis (FMEA) methodology
E. Chalkia, E. Sdoukopoulos & E. Bekiaris

Sensitivity analysis of risk-based conceptual ship design
Y. Garbatov & F. Sisci

Offshore and subsea technology

Risk assessment of subsea oil and gas production systems at the concept selection phase
M. Abdelmalek & C. Guedes Soares

Availability assessment of a power plant working on the Allam cycle
U. Bhardwaj, A.P. Teixeira & C. Guedes Soares

Subsea water separation: A promising strategy for offshore field development
Y.X. Wang, C. Hong, J.K. Yang, S.F. Estefen & M.I. Lourenço

Ship motions I

Characterization of ship motions induced by wake waves
F.G.L. Pedro, L.V. Pinheiro, C.J.E.M. Fortes, J.A. Santos & M.A. Hinostroza
Motions and mooring loads of a tanker moored at open jetty in long crested irregular waves including second order effects
H.S. Abdelwahab & C. Guedes Soares

Numerical and experimental study of ship-generated waves
S.R.A. Rodrigues, C. Guedes Soares & J.A. Santos

Ship motions II
Hydrodynamic study of the influence of bow and stern appendages in the performance of the vessel OPV 93
B. Verma, D. Fuentes, L. Leal & F. Zarate

Seakeeping optimization of a catamaran to operate as fast crew supplier at the Alentejo basin
F. Belga, M. Ventura & C. Guedes Soares

Comparative study of various strip-theory seakeeping codes in predicting heave and pitch motions of fast displacement ships in head seas
F. Belga, S. Sutulo & C. Guedes Soares

Ships in transit
The transit state evaluation of a large floating dock by seakeeping criteria
E. Burlacu & L. Domnisoru

Comparison of dynamic and quasi-static towline model for evaluation of wave-induced towed ship motions
I. Ćatipović

Wave-structure interaction
Comparisons of CFD, experimental and analytical simulations of a heaving box-type floating structure
H. Islam, S.C. Mohapatra & C. Guedes Soares

TLP surge motion: A nonlinear dynamic analysis
S. Amat & M.J. Legaz

Wave interaction with a rectangular long floating structure over flat bottom
Y. Guo, S.C. Mohapatra & C. Guedes Soares

Wave and wind energy
Optimization of wave energy converters in the OPWEC project
F. Taveira-Pinto, P. Rosa-Santos, C.A. Rodríguez, M. López, V. Ramos, S. Xu, K. Rezanejad, S. Wang & C. Guedes Soares

Experimental study of two mooring systems for wave energy converters

Experimental study on auto-parametrically excited heaving motion of a spar-buoy
T. Iseki

Waves
Numerical analysis of waves attenuation by vegetation in enclosed waters

Peak period statistics associated with significant wave heights by conditional mean functions of the distributions
G. Muraleedharan, C. Lucas & C. Guedes Soares
Preface

Since 1987, the Naval Architecture and Marine Engineering branch of the Portuguese Association of Engineers (Ordem dos Engenheiros) and the Centre for Marine Technology and Ocean Engineering (CENTEC) of the Instituto Superior Técnico (IST), University of Lisbon (formerly Technical University of Lisbon) have been organizing national conferences on Naval Architecture and Marine Engineering. Initially, they were organised annually and later became biannual events.

These meetings had the objective of bringing together Portuguese professionals giving them an opportunity to present and discuss the ongoing technical activities. The meetings have been typically attended by 150 to 200 participants.

At the same time as the conferences have become more mature, the international contacts have also increased and the industry became more international in such a way that the fact that the conference was in Portuguese started to hinder its further development with wider participation. Therefore, a decision was made to experiment with having also papers in English, mixed with the usual papers in Portuguese. This was first implemented in the First International Conference of Maritime Technology and Engineering (MARTECH 2011), which was organized in the year that Instituto Superior Técnico completed 100 years. Subsequently, two more MARTECH conferences have been organized, namely in 2014 and 2016, always with a broadening of scope.

In this Fourth International Conference of Maritime Technology and Engineering (MARTECH 2018), a total of around 130 abstracts have been received and 80 papers were finally accepted.

The Scientific Committee had a major role in the review process of the papers although several other anonymous reviewers have also contributed and deserve our thanks for the detailed comments provided to the authors allowing them to improve their papers. The participation is coming from research and industry from almost every continent, which is also a demonstration of the wide geographical reach of the conference.

The contents of the present books are organized in the main subject areas corresponding to the sessions in the Conference and within each group the papers are listed by the alphabetic order of the authors.

We want to thank all contributors for their efforts and we hope that this Conference will be continued and improved in the future.

C. Guedes Soares & T.A. Santos
Organisation

CONFERENCE CHAIRMEN
Carlos Guedes Soares, IST, Universidade de Lisboa, Portugal
Pedro Ponte, Ordem dos Engenheiros, Portugal

ORGANIZING COMMITTEE
Yordan Garbatov, IST, Universidade de Lisboa, Portugal
Dina Dimas, Ordem dos Engenheiros, Portugal
Ángelo Teixeira, IST, Universidade de Lisboa, Portugal
Tiago A. Santos, Ordem dos Engenheiros, Portugal
Manuel Ventura, IST, Universidade de Lisboa, Portugal
Paulo Viana, Ordem dos Engenheiros, Portugal
Abel Simões, ENIDH, Portugal
António Oliveira, Transinsular, Portugal

TECHNICAL PROGRAMME COMMITTEE
<table>
<thead>
<tr>
<th>Ermina Begovic, Italy</th>
<th>Luis Ramon Nuñez, Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kostas Belibassakis, Greece</td>
<td>Marcelo Ramos Martins, Brazil</td>
</tr>
<tr>
<td>Rui Carlos Botter, Brazil</td>
<td>Ould El Moctar, Germany</td>
</tr>
<tr>
<td>Evangelos Boulougouris, UK</td>
<td>Thanos Pallis, Greece</td>
</tr>
<tr>
<td>Dario Bruzzzone, Italy</td>
<td>Apostolos Papanikolau, Greece</td>
</tr>
<tr>
<td>Nian Zhong Chen, UK</td>
<td>Josko Parunov, Croatia</td>
</tr>
<tr>
<td>Matthew Collette, USA</td>
<td>Preben T Pedersen, Denmark</td>
</tr>
<tr>
<td>Giorgio Contento, Italy</td>
<td>Jasna Prpić-Oršić, Croatia</td>
</tr>
<tr>
<td>Vicente Díaz Casás, Spain</td>
<td>Harilaos Psaraftis, Denmark</td>
</tr>
<tr>
<td>Leonard Dominisoru, Romania</td>
<td>Jonas Ringsberg, Sweden</td>
</tr>
<tr>
<td>Soren Ehlers, Germany</td>
<td>Germán R. Rodriguez, Spain</td>
</tr>
<tr>
<td>Selma Ergin, Turkey</td>
<td>Jani Romanoff, Finland</td>
</tr>
<tr>
<td>Segen F. Estefen, Brasil</td>
<td>Xin Shi, China</td>
</tr>
<tr>
<td>Pierre Ferrant, France</td>
<td>Asgeir Johan Sorensen, Norway</td>
</tr>
<tr>
<td>Juana Fortes, Portugal</td>
<td>Maciej Taczala, Poland</td>
</tr>
<tr>
<td>Yordan Garbatov, Portugal</td>
<td>Michele Viviani, Italy</td>
</tr>
<tr>
<td>Sérgio Garcia, Spain</td>
<td>Alex Vredevedt, The Netherlands</td>
</tr>
<tr>
<td>Peter Georgiev, Bulgaria</td>
<td>Decheng Wan, China</td>
</tr>
<tr>
<td>Hercules Haralambides, The Netherlands</td>
<td>Duan Wenyang, China</td>
</tr>
<tr>
<td>Chunyan Ji, China</td>
<td>Xinping Yan, China</td>
</tr>
<tr>
<td>Xiaoli Jiang, The Netherlands</td>
<td>Peilin Zhou, UK</td>
</tr>
<tr>
<td>Jean-Marc Laurens, France</td>
<td>Ling Zhu, China</td>
</tr>
</tbody>
</table>

TECHNICAL PROGRAMME & CONFERENCE SECRETARIAT
Sandra Ponce, IST, Universidade de Lisboa, Portugal
Maria de Fátima Pina, IST, Universidade de Lisboa, Portugal
Bruna Covelas, IST, Universidade de Lisboa, Portugal
Port performance I
Comparative analysis of port performances between Italy and Brazil

A.N. Nascimento & A.M. Wahrhaftig
Federal University of Bahia, Salvador, Brazil
H.J.C. Ribeiro
Federal Institute of Education Science and Technology of Bahia, Salvador, Brazil

ABSTRACT: The State of Bahia has one of the largest port complexes in Brazil, that consists of public ports and private use terminals. One of which is specialized with a cargo carrying capacity of about 530 thousand TEUs (Twenty-foot Equivalent Unit) per year. On the other hand, the container terminal at the port of Genoa, Italy, has a similar capacity but has been performing better than the Brazilian one. The present study evaluates the differences and similarities between these ports, in the context of engineering, environmental sustainability and some topics of the port regulatory framework that can influence productivity. Based on the arrival and service rates of the ships and their respective probability distributions, a mathematical model of queuing theory was developed that indicates the port occupation rate, the time and the average number of ships in the queue, in a process with which one can assess the environmental impact of these terminals.

1 INTRODUCTION

The Container Terminal of the Port of Salvador (TCS), located in the northeast of Brazil, is a medium-sized structure port, with two berths (pier 1 and 2). Pier 1 is the most modern, with a greater depth and extension, is equipped with cranes which are able to serve ships of the super-postpanamax class, serving almost all the demands of the terminal. On the other hand, pier 2 has smaller extension and depth, operates with cranes which can serve ships of the panamax class only, meeting the needs of a small part of the terminal demand.

With similar characteristics to TCS, although with greater capacity, the Container Terminal of Genoa (TCG) is a benchmark in this work. It is located in the region of Liguria, Italy, having a modern structure, with berth length, seaport depth and cranes able to serve ships of the super-postpanamax class.

It should be noted that, not always, the entire cargo of the ship is destined for the port at which the vessel is arriving. Therefore, both loading and unloading may occur. Cargo may also be only loaded or unloaded, in whole or in part.

The Port of Salvador has a single container terminal, while in Genoa there are two important terminals. The results of the studies published here relate only to one of these Genoa’s Terminals. Referring to the designation adopted—TCS and TCG—do not represent the commercial name of the companies involved herein.

Based on the study of these two port structures, this paper evaluates the differences and similarities of both maritime terminals, both in the engineering (naval-port infrastructure and queuing theory) and in environmental sustainability, as well as in some points of the regulatory framework and logistical infrastructure of both countries that can influence and reveal the competitiveness of these ports.

Based on vessel arrival and service rates and their consequent probability distributions, in addition to other constraints, the queuing model reveals the time and average number of ships in process, the port occupation rate, and the expected probability of this finding variable, may provide a possibility of fine payments for delay in services, thus serving as the efficiency indicators of port operation.

The results obtained here, and their interpretations, are limited to the time of their respective data collection, as well as to the reliability of information that was possible to obtain at the time of the technical visits and professional meetings held. They are also limited to the consultations made to the electronic pages of the terminals and institutions that control local port operations.

The present work is in the context of other researches already carried out. Camelo et al. (2010), used queuing theory to simulate the behavior of the row of iron ore vessels in the port of Ponta da Madeira, Brazil, with the aid of the Arena® software and found high berth occupation rates, recommending investments in the expansion of its capacity to meet the expectations of growing demand for ores in the world market. In this same direction, Schoreder (2014) simulated the operational behavior of the container terminal at the port of Durban, South Africa, based on the operation of the queue system of the container terminal at the port of Rotterdam from the logic of model construction simulated
with Simio® software. It is concluded, after validation, that the model represents appropriately the operational reality of the terminal. Navarro et al. (2015), on the other hand, applied a queuing network model in the container terminal of the port of Manila involving both the queue of container haulers to the port and the queue of ships awaiting loading with the aid of the software Promodel®. By demonstrating the usefulness of the model used, concludes by the adoption of vehicle reserves to support variability in the ship loading rhythm.

2 METHODOLOGY

The primary data for the construction of the queuing model, based on vessel movement in the TCS, was obtained in the statistics sector of the Docks Company of the State of Bahia—CODEBA, in the format of Excel® spreadsheets, comprising the years 2012 to 2016, except for the year 2015 that was excluded from the statistical database because of inconsistencies, resulting in 1,597 events exclusively for pier 1, the most important of this port. The pier 2, because of its smaller depth (only 12 m) as compared to pier 1 (14 m) and the available infra-structure, including the length, does not allow the docking of the ships planned to dock at pier 1. Hence, it configures a single server queue system (S = 1) since only the vessel movement data on pier 1 was considered for the purpose of comparison with the TCG in this article, highlighting that this specific terminal of Genoa has only 1 berth (S = 1). The Table 1 presents a brief of CODEBA data.

From this data, statistical tests were performed to evaluate adherence to certain probability distributions, according to Hillier, FS & Lieberman G. J. 1995, as a requirement to select the correct mathematical form for modeling the ship queue. Consequently, tests were applied for Poisson, exponential, Erlang and range, among others, for arrival and service time of the ships. The computational assistance for these tests was software R, version 3.4.1, and Quantitative Systems Business Plus (QSB+), as well as Excel® spreadsheets (Microsoft Corporation) were used for queuing system behavior calculations.

Based on this data with an aim to implement the mathematic model of queues, the average ship arrival rate (λ) and the average service rate (μ) were calculated. After calculating these input variables and evaluating their respective statistical behaviors (arrivals and services), the parameters of this queuing model were calculated using the QSB+, which are:

- L: Number of ships in the system (waiting and in service);
- Lq: Number of ships in queue (waiting to be attended);
- W: Waiting time in the system (waiting and in service);
- Wq: Waiting time in queue (waiting to be attended);
- ℓ: Terminal occupancy rate;
- Po: Probability of the terminal being idle;
- Pw: Probability of waiting to be attended.

The parameters implicit in Kendall’s notation (A/B/s/N/m/Z), which together with (λ) and (μ), complete the information required for modeling, are selected by the QSB+ software and are adopted for this work. They can be defined as:

- A describes the statistical distribution of the number of arrivals;
- B describes the statistical distribution of the time of service;
- s is the number of servers (Berth)
- N is the maximum capacity (maximum number of vessels allowed in the system);
- m is the size of the population that provides customers (ships);
- Z is the row discipline (how they are selected to be attended).

Considering an unlimited capacity of a given system (N), the population of clients that demand a single service of this system is also infinite (m), and its service is in order of arrival (Z); the notation of Kendall can be summarized as A/B/1. Thus, the notation of the type M/M/s, Markovian, is denoted as Poisson input and exponential service time with s servers. If it is M/G/1, it implies Poisson input and a general service distribution with 1 server (S = 1). However, it should be noted that the queuing models that are closest to reality, register values for ℓ < 1.

During the survey, visits were made to the port of Salvador, Brazil, both to observe, in-situ situations and to discuss with them the details of the studies being carried out. Further to analyze the technical validation by experienced professionals, as well as
3 Obtained Results

3.1 Results for the infrastructure

The operational capacity of these terminals can be summarized as shown in Table 2.

According to Table 2, and due to the combination of factors such as water density, suction that the hulls of vessels are subjected to in squat, wave effects, background irregularities and sedimentation, the PIANC standard (PIANC, 1997) recommends a slack due to the squat that can be determined by the expression:

\[S_s = \frac{C_s + 1/2C_u}{L_{pp}} \left(\frac{1}{g} \right) \sqrt{V} \left(\frac{1 - V_{ms}}{g} h \right) \]

where:

- \(C_s \) and \(C_u \) = coefficients recommended by the standard, with: \(C_s = 1.46 \) (due to heave) and \(C_u = 1 \) (due to pitch).
- \(V = \text{buoyancy volume in m}^3 \)
- \(L_{pp} = \text{length between perpendiculars in m} \)
- \(F_{in} = \text{Froude's number relative to local depth, given by:} \)

\[F_{in} = \frac{V_{ms} \sqrt{(gh)}}{g} \]

where:

- \(V_{ms} = \text{speed of evolution in m/s} \)
- \(g = \text{acceleration due to gravity, 9.81 m/s}^2 \)
- \(h = \text{local depth in m} \)

To measure the clearances, vessels of the post-panamax type were adopted (PIANC, 1997). Due to the similarity in terminal infrastructure, their gaps are equal (Sb = 1.15 m) and so the recommended maximum draft (T) for ships is: \(T = 12.85 \text{ m for TCS and T = 13.85 m for Genoa} \).

The maximum range for the booms of the cranes at both ports is 55 m, with 50 m being the maximum permissible molded breadth for ships.

Considering these dimensions, the berth lengths (Table 2), operating clearances and maximum length-to-beam ratio of 8, the maximum lengths for ships for these terminals are as follows: \(L = 350 \text{ m (TCS) and L = 400 m (TCG)} \). Adopting the average block coefficient of 0.65 (PIANC, 1997), one can reach the full load displacements of:

\[\Delta_{TCS} = 1,298,881 \text{ kN}; \Delta_{TCG} = 1,601,360 \text{ kN} \]

Assuming now the average recommended ratio (PIANC) for the relationship between the deadweight and the full displacement of 0.70, we arrive at the gross deadweights:

\[\text{DWT}_{TCS} = 907,437 \text{ kN}; \text{DWT}_{TCG} = 1,120,952 \text{ kN} \]

Considering that the variability of the load causes the actual net weight of the containers to vary, hence the average value of the gross weight of 133.9 kN was adopted, thus estimating the following maximum ship loads at these terminals (measured in TEUs):

\[\text{DWT}_{TCS} = 6,800 \text{ TEUs}; \text{DWT}_{TCG} = 8,400 \text{ TEUs} \]

In addition to this dock infrastructure, the TCS and TCG have the following equipment for movement in the back area, as shown in Table 3.

With this infrastructure, the TCS informs the capacity of 530,000 TEUs/year, while the information of the TCG is 550,000 TEUs/year. In 2016 TCS moved 200,000 TEUs while TCG moved 300,000 TEUs.
3.2 Results for statistical tests

The application of the adhesion test to the number of ship arrivals proved to be validated for the Poisson distribution. The raw data was systematized for the application of the test and summaries of the results are available in Table 4.

The non-parametric Kolmogorov-Smirnov test was used for the time of service of the ships for different statistical distributions, including the gamma distribution. In this case, the shape parameter (α) and the rate parameter (β) are modeled by the probability density function given by Eq. (6)

\[f(x) = \begin{cases} \beta^\alpha x^{\alpha-1}e^{-\beta x} & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases} \] \quad (6)

where ‘x’ is the assumed value of the independent variable of the problem and the gamma function γ(α), on the other hand, is given by Eq. (7):

\[\gamma(x) = \int_0^\infty x^{\alpha-1}e^{-x} \, dx \] \quad (7)

Based on this model, the adhesion test for the service time was applied, which was validated for the gamma distribution. It is reported that the treated data was imported from the Excel® worksheet into software R, which did not reject the null hypothesis of adherence between theoretical and observed behaviors. The results obtained can be seen in Figure 1.

As shown in Figure 1, the observed and theoretical (gamma) behavior results for significance of 5% and

Table 3. Devices of moving (retro area).

<table>
<thead>
<tr>
<th>RTG</th>
<th>RMG</th>
<th>Reach Stackers</th>
<th>Access way</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS</td>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>TCR</td>
<td>8</td>
<td>6</td>
<td>17</td>
</tr>
</tbody>
</table>

Table 4. Chi-squared test for Poisson¹.

<table>
<thead>
<tr>
<th>H₀ Is Poisson</th>
<th>H₀ Is Not Poisson</th>
<th>≤0.05</th>
<th>0.05</th>
<th>0.025</th>
<th>0.01</th>
<th>0.005</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>max</td>
<td>standard deviation</td>
<td>sum (\chi^2)</td>
<td>p-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>24</td>
<td>43</td>
<td>33.27683</td>
<td>4.76856</td>
<td>3.3581</td>
<td>0.0008</td>
<td>0.0106</td>
<td>0.0232</td>
</tr>
</tbody>
</table>

Figure 1. Kolmogorov-Smirnov test (working time)¹.

¹ Pier 611 for years 2012, 2013, 2014, 2016. p-value (0.983); test statistic (0.0577); observations (1597); shorter time (0.1667); maximum time (23.92); average time (11.60); Parameter shape-gamma (4.95); parameter rate-gamma (0.4264).
test statistics of 0.057, the p-value resulted in 0.983, indicating that there is no evidence to reject the null hypothesis. This test was applied to a gamma distribution with a shape parameter of approximately 4.95 and a scale parameter of approximately 0.43.

3.3 Results for queue output data

Complementing the statistical results with the characteristics and infrastructure of the terminals, and considering unlimited vessel mooring capacities, it is possible to assume, for the purpose of the queuing system, and in the context of Kendall’s notation, the M/G/1 for the TCS, which is:

- A (distribution of number of arrivals): Poisson;
- B (distribution of time of service): gamma;
- s (number of berths): 1 (restricted to types of vessels);
- N (system capacity): unlimited (bay);
- m (size of ship population): infinite;
- Z (row discipline): FIFO / order of arrival

To compare the performance of the queue between the terminals, it was assumed that the statistical behavior for the TCS is equivalent to the TCG, i.e. M / G / 1. With the TCS data treatment the average arrival (λ) and service (μ) rates were calculated. For the TCG, inferences and calculations were made from the infrastructure and arrivals of ships in this terminal, available on the website in the global computer network of the Port of Genoa, 2017. The results, in ships/day, are:

\[\lambda_{\text{TCS}} = 1.10; \quad \mu_{\text{TCS}} = 2.10; \quad \lambda_{\text{TCG}} = 1.44; \quad \mu_{\text{TCG}} = 2.88. \]

With this data and through the QSB+ software, the behavior of the queue for both terminals was calculated, as shown in Figure 2, which represents the screen of the results of the application for the TCS.

The summary of the approximated results, by QSB+, is in Table 5.

In order to forecast a 50% increase in demand, new calculations were made for the queuing system, maintaining service rates (μ), but assuming the following arrival rates (ships/day): λ_{\text{TCS}} = 1.65 e λ_{\text{TCG}} = 2.16. Table 6 summarizes the results obtained by QSB+ for this new scenario.

Considering the possible unavailability of one of the cranes at the terminals, it results in a proportional reduction of 1/3 of the service capacity for the TCS and 1/5 for the TCG, and new service rates of 1.4 ships/day and 2.30 ships/day, respectively for TCS and TCG. With this new input data, we get the results of Table 7.

With this data, other results are generated, such as the comparison between the two scenarios for the waiting time in the system (W) and the occupancy rate of the terminals (ℓ), as can be seen in Figures 3, 4 and 5.

The reduction in capacity over the service time of these terminals can be seen in Figure 5.

3.4 Results of the impact of queuing on the environment

While waiting in the queuing system, the ship’s engines generate emissions that impact the environment.

Table 6. Result of queue with new demand.

<table>
<thead>
<tr>
<th>ℓ (%)</th>
<th>L</th>
<th>Lq</th>
<th>W (h)</th>
<th>Wq (h)</th>
<th>P0 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS</td>
<td>79</td>
<td>3</td>
<td>2</td>
<td>37</td>
<td>24</td>
</tr>
<tr>
<td>TCG</td>
<td>75</td>
<td>3</td>
<td>2</td>
<td>26</td>
<td>18</td>
</tr>
</tbody>
</table>

1. Considering the arrival rate 50% higher.

Table 7. Impact on queue with reduced capacity.

<table>
<thead>
<tr>
<th>ℓ (%)</th>
<th>L</th>
<th>Lq</th>
<th>W (h)</th>
<th>Wq (h)</th>
<th>P0 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS</td>
<td>77.5</td>
<td>3</td>
<td>2</td>
<td>50</td>
<td>32.5</td>
</tr>
<tr>
<td>TCG</td>
<td>62.5</td>
<td>2</td>
<td>1</td>
<td>21</td>
<td>11</td>
</tr>
</tbody>
</table>

1. Considering unavailability of 1 crane.

Figure 2. Results for the TCS1 Queue System.

Figure 3. Impact of demand on waiting time.
Results of regulatory and logistical aspects

Regarding the regulatory aspects and port accessibility, the data are shown in Table 9.

Another important result is available as a general logistics performance indicator, where Italy ranks 21st, and Brazil ranks 55th in the world ranking, according to the World Bank, 2016.

4 DISCUSSION OF RESULTS

From the results obtained, it can be observed that both terminals have similar characteristics, are housed inside a bay and have relatively close infrastructures, but with advantages for the TCG, which has more resources, and can serve larger vessels (8,400 TEUs) against 6,800 TEUs in the TCS, almost 25% higher, with better logistical accessibility.

However, it should be noted, that in this last resort, the TCS only has road access for container movement, an important exclusive logistics via (4.3 km). The TCG, in turn, has both a highway, just 500 m from the freeway, and trails (3 trails of 370 m) with access to the Italian railroad, which is an important and outstanding logistical advantage.

With this infrastructure, the reported capacity of the TCG (550,000 TEUs) is approximately 4% higher than the capacity of the TCS (530,000 TEUs).

Regarding the demands for the terminal and the service capacity, it can be observed that while the TCS serves 2 vessels/day, the TCG can serve up to 3 vessels/day. Even though its arrival rate is approximately 1/3rd higher than the rate of TCS arrivals. This happens because the infrastructure of

Table 8. NOx emissions caused by the demand.

<table>
<thead>
<tr>
<th></th>
<th>Current demand (tNOx)</th>
<th>Future demand (tNOx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS</td>
<td>0.033</td>
<td>0.197</td>
</tr>
<tr>
<td>TCG</td>
<td>0.024</td>
<td>0.138</td>
</tr>
</tbody>
</table>

1. EN = 320 kW·h; FP = 0.4; FE = 13.9 g/kWh.

The impact of this data can be best seen in the graphical comparison of Figure 6.

3.5 Results of regulatory and logistical aspects

Regarding the regulatory aspects and port accessibility, the data are shown in Table 9.

Another important result is available as a general logistics performance indicator, where Italy ranks 21st, and Brazil ranks 55th in the world ranking, according to the World Bank, 2016.

Table 9. Accessibility and regulatory indicators.

<table>
<thead>
<tr>
<th></th>
<th>Railroad¹ (Km)</th>
<th>Highway¹ (Km)</th>
<th>Contract¹ (years)</th>
<th>Oversight² (agents)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCS</td>
<td>0</td>
<td>4.3</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>TCG</td>
<td>¹</td>
<td>0.5</td>
<td>30</td>
<td>6</td>
</tr>
</tbody>
</table>

Based on Eq. (8) and considering the results of the queues for the TCS and the TCG, along with the NOx gas emission factor of 13.9 g/kWh, we get the following synthesized results in Table 8, with an aim to meet current and future demands.

Figure 4. Impact of demand on the occupancy rate.

Figure 5. Effect of capacity reduction of ships in service.

Figure 6. Gaseous NOx emissions caused by the demand.

\[EG(t) = L \cdot (EN \cdot FP \cdot W \cdot FE) \] (8)

in which: \(EG \) = gaseous emissions (t); \(L \) = number of ships in the queue system; \(EN \) = energy consumed (kW·h); \(FP \) = power factor (%); \(W \) = ship waiting time (h); \(FE \) = emission factor (g/kWh).

Based on Eq. (8) and considering the results of the queues for the TCS and the TCG, along with the NOx gas emission factor of 13.9 g/kWh, we get the following synthesized results in Table 8, with an aim to meet current and future demands.

The impact of this data can be best seen in the graphical comparison of Figure 6.
the Genoa terminal is more imposing than the terminal in Salvador. The availability of 2 more cranes than the TCS enables the TCG to handle a ship at around 8 h, while the TCS needs an average of 11.5 hours to process it. Thus, while in Genoa a ship waits at the terminal for an average of 14 hours between its arrival and departure, the same time in Salvador would be 19 hours, i.e. 5 hours more.

It can also be observed that due to its current arrival and service rates, at both terminals, two vessels will be present on average, one in service and the other coming to the queuing system. Of course, the service capacity makes the difference both in the waiting time at the terminal and in the load factor of the terminal. So, waiting in line at the TCG (6.0 h) would be 1.5 h less than at the TCS (7.5 h). This is linked to the infrastructure of these terminals and affects the results of their respective occupancy rates, making Salvador with 52%, a little higher than that of Genoa (50%).

Now, analyzing the results of the simulation with 50% increase in the arrival rate, a similar behavior was observed for both vessels in their respective systems, that is, 3 units, 1 ship in service and 2 ships in the queue. However, once again, the TCG presents advantages in attending these units. While the impact of this simulation causes the waiting time in Salvador to increase approximately by 95%, going from 19 h to 37 h, the impact in Genoa would be an increase of 86%. This would be a smaller increase in waiting time, jumping from 14 h to 26 h. In the same context, the occupancy rate in Genoa would also have less impact, jumping from 50% to 75%, thus a difference of 25%, while in Salvador the impact would be of 27%, jumping from 52% to 79%.

On the other hand, analyzing the results of the simulation with the reduction in service capacity, there is an even greater advantage for TCG. While at TCG the increase in the waiting time of a ship is 7 h, jumping from 14 h to 21 h, the impact on the TCS would be more significant, an increase of 31 h from 19 h to 50 h, i.e. double the current time. Also in this simulation, the impact on the queue is better absorbed by the TCG, which would have only 2 ships in the system, 1 more than in the current queuing state, while TCS would retain 3 ships, 2 more than its current operation.

Regarding the impact of the queue on the environment (NOx emissions), the results calculated for the TCG would once again have advantages on the TCS. At TCS, in the current state of operation 33 Kg is emitted, while in the TCG it is 27% smaller i.e. 24 Kg. However, this proportional difference would jump to 30% in favor of the TCG, with the increase of the demand in the terminals.

Regarding the normative regulatory aspects, it is observed that in Italy a revision in the port regulations occurred recently with the addition of Legislative Decree 169/2016, although Law 84/1994 is still in force. In Brazil, the complete legal framework is more recent and is based on Law 12,815 / 2013. The Italian regulatory revision implemented a service called “sportello unico” which anticipates the services for the fulfillment of the documentary demands of the ship cargoes destined to Italian ports, 24 hours before arriving in the country. This already reduces the estimated time by 30% and 40%, indicating that in the port of Genoa the wait would have already been reduced from 4 to 5 days. Obviously, the queuing model presented here considers only vessels capable of being served in the system, disregariding the time of document processing. In this context, Brazil instituted in 2011 the procedure entitled “Paperless Harbor” to group together the necessary documentation for the processing of cargo ships in the so-called Virtual Single Document. Also in this legal aspect other operational similarities appear, so that in Brazil the concession contracts are of 25 years while in Italy the term is a little longer, of 30 years; the number of agents involved in ship liberations is also very close, with 7 in Brazil and only 6 in Italy.

As per the World Bank’s logistic performance indicator (2016), evidenced in the ranking, Brazil is in a much less competitive position (55th) as compared to Italy (21st), i.e. an equivalent of 34 disadvantage positions. This indicator is part of a study conducted every 2 years and reveals that as compared to the previous edition (2014) Brazil improved 10 positions, while Italy lost only 1 position, and Germany occupies the first place, revealing itself as the country with the best logistics infrastructure. Among the criteria that make up this indicator are reliability of operations, cargo tracking, handling and port infrastructure.

5 CONCLUSIONS

A comparative study was carried out between the container terminal of the Port of Salvador-Brazil (TCS) and the container terminal of the Port of Genoa-Italy (TCG) by the modeling of discrete systems through queuing theory, complemented by aspects—the regulatory and logistical infrastructure of these countries. The queuing theory provides important results for the management of ongoing operations and for the planning of new guidelines that favors the improvement in the functioning of these productive systems.

Both the TCS and the TCG are important ports in both countries with infrastructure capable of ensuring competitiveness in their areas of influence. While the TCG has strong penetration in the markets of northern Italy and southern Europe, the TCS stands out in Brazil acting across the coast of the country and towards the North Atlantic.

The analysis of the data and the results indicate that the Genoa terminal, which has similarities with
the Salvador terminal, can be a good reference for the latter. It can be seen that investments in dock infrastructure, such as the size and capacity of container handling, are very sensitive to the operational results. Thus, only one meter more depth in the cradle and the presence of two additional cranes, besides other important logistic complements, can make a significant difference in the operational results of the ports, as verified in this study, showing better yields for the TCG. Significant increases in demand would cause the TCS to operate close to the limits of its capacity with mechanical fatigue risks on the handling equipment, which could lead to interruptions with consequent payments of contractual fines for delay in the service of the ships.

Another aspect that deserves attention is the location of the TCS in a densely populated area of Salvador, an important tourist spot, which casts doubts on the security of the investments needed in the infrastructure to increase the capacity. The possibility of moving the Port to another area is still under evaluation and also its permanence to the present place with the extension of the berth is scrutinized. In Genoa, although the TCG is also located in the outskirts of the city, the railway infrastructure and the easy access to the Italian highways do not seem to present the same problems as for the TCS.

In the environmental context, as TCG presents a more efficient queuing system than the TCS, it releases less pollution in the region, even though these emissions should be below the limits recommended by international organizations.

Concerning the regulatory aspects, both in Italy and in Brazil there have been similar updates of its legal frameworks in order to reduce bureaucracy in the port system, although the effect seems to be faster in Italy than in Brazil (documentation of processing of ships). Also the concession period is similar, although in Brazil it is five years shorter than in Italy, with the idea of imposing a faster return on private investment. In general, Brazil has limited logistics infrastructure in the service of ports, being only served by the road, unlike Italy where the road and rail system show more availability for the transport of containers.

It should be noted that the methodology presented here, although supported by a consistent set of data regarding the port of Salvador, has its limitations due to the uncertainties of the data obtained in reference to the Italian port. Although the results obtained compose a representative model of port operations, very useful for the planning of such facilities.

REFERENCES

Costa, F. Docks Company of the state of Bahia - CODEBA. Data base in spreadsheets. Electronic publishing [personal message]. Received by [annas@ufba.br] in March 07, 2017.

Comparative analysis of port performances between Italy and Brazil

Costa, F. Docks Company of the state of Bahia CODEBA. Data base in spreadsheets. Electronic publishing [personal message]. Received by [annas@ufba.br] in March 07, 2017.

Port of Santos, Brazil: Essential factors to implement a green port system

Evaluation of port performance: Research opportunities from the systemic analysis of international literature

Performance evaluation of the infrastructure of ports from Santa Catarina State

Port performance II

giuliano, g. & o`brien, t. (2007). reducing port-related truck emissions: the terminal gate appointment system at the ports of los angeles and long beach. transportation research part d: transport and environment, 12 (7), 460-468.
guan, c.q. 2009. analysis of marine container terminal gate congestion, truck waiting cost, and system optimization. new york institute of technology.

inė 2016. estatísticas dos transportador kalmar 2016. technical data reach stackers 42 to 45 tonnes.
liebherr 2016a. technical description rail mounted gantry cranes.
liebherr 2016b. technical description ship-to-shore gantry cranes.
martinez, c.m. 2013. metodologia para maximizar la rentabilidad de una terminal marítima de contenedores a través de la optimización de su grado de automatización.
sharif, m. n. (2011). developing a tool for designing a container terminal yard. tu delft: delft university of technology.
silva, l.p.f., veloso gomes, f., pinto, f.t., santos, p.r., lopes, h.g. 2008. leixões cruise terminal: architecture and port engineering. 3as jornadas de hidráulica, recursos hídricos e ambiente.
vo, p. & s., stahlbock, r., steenken, d. (2004). container terminal operation and operations research classification and literature review. or spectrum, 26 (1), 30-46.
world cargo news 2006. getting the best out of crane spreader.
banks, j.; carson ii, j.s.; nelson, b.l.; nicol, d.m. (2005). discrete-event system simulation. p. 9 to 11, pearson.
brown, m. (2013). exploration and resource definition of offshore titan-magnetite iron sands, on the west coast of new zealand. offshore technology conference, houston.
buckley, p., lee, k., & kuby, m. (1986). evaluating dredging and offshore loading locations for u.s. coal exports using the local logistics system. annals of operations research, 6, 163-180.
cigolini, r.; pero m.; rossi, t. (2011). sizing off-shore transshipment systems: a case study in maritime dry bulk transportation. production planning and control, taylor & francis.
liang, c.; hwang, h.; gen, m. (2011). a berth allocation planning problem with direct transshipment consideration. journal of intelligent manufacturing. springer us.
port technology (2012). berth productivity will have to keep up with shipping supersized revolution. maersk line, 50 edition, p. 18-20, denmark.
souza, c.e.s. (2012). modelagem e análise de duas alternativas para operacoes de transferencia de petroleo entre dois navios em altamar. master dissertation, usp, sao paulo.
Improving capacity of port shunting yard

Analysis of a new container terminal using a simulation approach

Operational and cost based analysis of ship to ship transshipment in Brazil: An application to the iron ore in the port of Santos

INE 2016. Estatisticas dos Transporter

Kalmar 2016. Technical Data Reach Stackers 42 to 45 tonnes.

Liebherr 2016a. Technical Description Rail Mounted Gantry Cranes.

Liebherr 2016b. Technical Description Ship-to-Port Gantry Cranes.

Martinez, C.M. 2013. Metodologia para maximizar la rentabilidad de una terminal maritima de contenedores a traves de la optimizacion de su grado de automatizacion.

Maritime transportation and economics

Evaluation of the Portuguese ocean economy using the Satellite Account for the Sea

Motorways of the sea

Characterizing the operation of a roll-on roll-off short sea shipping service

Big data in shipping

Fishing activity patterns for Portuguese seiners based on VMS data analysis

Parente, J. (2003), Caracterização da frota de cerca costeira e perspetivas de modernização. Dissertação original apresentada para Provas de acesso a categoria de Investigador Auxiliar, no Instituto de Investigação das Pescas e do Mar, pp. 216.

Characterizing container ship traffic along the Portuguese coast using big data

Methodology for estimating technical characteristics of container ships from AIS data

Intelligent ship navigation

Challenges and developments of water transport safety under intelligent environment

Collision avoidance, guidance and control system for autonomous surface vehicles in complex navigation conditions

Role assignment and conflict identification for the encounter of ships under COLREGs

Conventions on the International Regulations for Preventing Collision at Sea (COLREGs). 1972. The International Maritime Organization (IMO).

Ship performance

Design related speed loss and fuel consumption of ships in seaways

Influence of main engine control strategies on fuel consumption and emissions

Mizuno, N., 2009. Marine Main Engine Control with Adaptive Extremum Control Scheme, IFAC Proceedings Volumes. IFAC.

Analysis of multipurpose ship performance accounting for SME shipyard building limitations

Wake of a catamaran navigating in restricted waters

A CFD study of a ship moving with constant drift angle in calm water and waves

Ship self-propulsion performance prediction by using OpenFOAM and different simplified propeller models

Resistance and propulsion

Experimental study of frictional drag reduction on a hull model by air-bubbling

Gokcay S. (2012), Ship drag reduction through air injection to boundary layer. May, Istanbul Technical University.

Procedure for production of scaled ship models for towing tank testing

A benchmark test of ship resistance in extremely shallow water

Ship propulsion

Optimization scheme for the propeller in ship concept design

Marine propulsion shafting: A study of whirling vibrations

Dynamics and control

Assessment of the electric propulsion motor controller for the Colombian offshore patrol vessel
Rockwell Automation 2014. When to use a soft starter or an AC variable frequency drive. Rockwell Automation Publication 150-WP007A-EN-P.

Simulation of a marine dynamic positioning system equipped with cycloidal propellers

Reliability analysis of dynamic positioning systems

Sustainability in Fishing Vessel Design Process 1988-2018

Ballast Water Management: And Now, What to Do?

Persistent Organic Pollutants in Baltic Herring in the Gulf of Riga and Gulf of Finland (North-Eastern Baltic Sea)

Ship design

Critical Wind Velocity for Harbor Container Stability

Tool for initial hull structure dimensioning at ship concept design

Conceptual design of multipurpose ship and fleet accounting for SME shipyard building limitations

Ship structures I

IACS 2014. Common Structural Rules for Bulk Carriers and Oil Tankers.

Vladimir, N., Senjanovic, I. 2017a. Evaluation of structural integrity of a ship hull used as port oil storage, Part I: 1D FEM analysis, University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, (internal report).
Analysis of the ultimate strength of corroded ships involved in collision accidents and subjected to biaxial bending

Residual strength assessment of a grounded container ship subjected to asymmetrical bending loads

IACS 2014. Common Structural Rules for Bulk Carriers and Oil Tankers.

Strength assessment of an aged single hull tanker grounded in mud and used as port oil storage

Vladimir, N., Senjanovic, I. 2017a. Evaluation of structural integrity of a ship hull used as port oil storage, Part I: 1D FEM analysis, University of Zagrreb, Faculty of Mechanical Engineering and Naval Architecture, (internal report).

Vladimir, N., Senjanovic, I. 2017b. Evaluation of structural integrity of a ship hull used as port oil storage, Part II: 3D FEM analysis, University of Zagrreb, Faculty of Mechanical Engineering and Naval Architecture, (internal report).

Failure assessment of transition piece of jacket offshore wind turbine

Low-Cycle Fatigue of Damaged Stiffened Panel in Ship Structures

Failure assessment of wash plates with different degree of openings

Structures in composite materials

Sutherland, L.S. 1993. Windsurfer Fin Hydrodynamics, University of Southampton.

Uncertainty propagation and sensitivity analysis of a laminated composite beam

Experimental study of the residual strength of damaged hybrid steel-FRP balcony overhangs of ships

Shipyard technology

Model to forecast times and costs of cutting, assembling and welding stages of construction of ship blocks

Causal Analysis of Accidents at Work in a Shipyard Complemented with Bayesian Nets Modelling

Analysis of SME Ship Repair Yard Capacity in Building New Ships

Shipyards of the 21st century: Industrial internet of things on site

Hyun, Lee. Strategies for improving the competitiveness of the Korean shipbuilding industry: Case study of Hyundai Heavy Industries. 2015.

Coating and corrosion

Internal Corrosion Simulation of Long Distance Sandwich Pipe

Ceramic coating solution for offshore structures

Life cycle and cost performance analysis on ship structural maintenance strategy of a short route hybrid

An integrated operational system to reduce O&M cost of offshore wind farms

Ships on condition data driven maintenance management

Risk analysis

Risk analysis of ships & offshore wind turbines collision: Risk evaluation and case study

Risk analysis of innovative maritime transport solutions using the extended Failure Mode and Effects Analysis (FMEA) methodology
Sensitivity analysis of risk-based conceptual ship design

IMO 2008. Formal safety assessment on crude oil tankers. 4 Albert Embankment, London SE1 7SR.

Offshore and subsea technology

Risk assessment of subsea oil and gas production systems at the concept selection phase

Subsea Water Separation: A Promising Strategy for Offshore Field Development

Ship motions I

Van Oortmerssen, G. (1976), The motions of a moored ship in waves. NSMB publication No. 510, Delft University of Technology.

Characterization of ship motions induced by wake waves

Motions and mooring loads of a tanker moored at open jetty in long crested irregular waves including second order effects

Numerical and experimental study of ship-generated waves

Ship motions II

Hydrodynamic study of the influence of bow and stern appendages in the performance of the vessel OPV 93

Seakeeping optimization of a catamaran to operate as fast crew supplier at the Alentejo basin

Comparative study of various strip-theory seakeeping codes in predicting heave and pitch motions of fast displacement ships in head seas

American Society of Mechanical Engineers.

The transit state evaluation of a large floating dock by seakeeping criteria
Anr . 2006. Album of ship types Maritime Tug 4000 HP Constantza: Romanian Naval Authority.
Galati: University Dunarea de Josâ€² Galati.

Comparison of dynamic and quasi-static towline model for evaluation of wave-induced towed ship motions

Comparisons of CFD, experimental and analytical simulations of a heaving box-type floating structure

TLP surge motion: A nonlinear dynamic analysis

Wave interaction with a rectangular long floating structure over flat bottom

Wave and wind energy

V. Nava ; M. Rajic, and C. Guedes Soares 2013. Effects of the mooring line configuration on the dynamics of a point absorber. 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013); Nantes, France. OMAE2013-11141.

Optimization of wave energy converters in the OPWEC project

Experimental study of two mooring systems for wave energy converters

V. Nava; M. Rajic, and C. Guedes Soares 2013. Effects of the mooring line configuration on the dynamics of a point absorber. 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013); Nantes, France. OMAE2013-11141.

Experimental study on auto-parametrically excited heaving motion of a spar-buoy

Waves

Numerical Analysis of Waves Attenuation by Vegetation in Enclosed Waters

Peak period statistics associated with significant wave heights by conditional mean functions of the distributions

Analysis of Extreme Storms in the Black Sea

Robust estimation and representation of climatic wave spectrum

