Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/39105
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCosta, Cinthia Cristina de Oliveira Santos-
dc.date.accessioned2024-02-27T15:31:14Z-
dc.date.available2024-02-27T15:31:14Z-
dc.date.issued2023-12-18-
dc.identifier.citationCOSTA, Cinthia Cristina de Oliveira Santos. Investigação dos efeitos da Apigenina conjugada a Ciclodextrinas em modelo in vitro de neuroinflamação em células da medula espinhal. 2023. 93 f. Dissertação (Mestrado) - Universidade Federal da Bahia, Instituto de Ciências da Saúde, Programa Multicêntrico de Pós-Graduação em Bioquímica e Biologia Molecular, Salvador, 2023.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/39105-
dc.description.abstractINTRODUCTION: Spinal cord injury is a serious damage to the central nervous system associated with high rates of morbidity and mortality, physical dependence, and financial burdens. Inflammation is the main characteristic of secondary injury that provides a cascade of cellular and molecular events that increase the area of injury, aggravating neurological deficits and tissue recovery. The literature presents different models of studies in the central nervous system in which apigenin has demonstrated beneficial effects. However, there is little research on the neuroprotective role of apigenin in spinal cord injury, and in addition, the low solubility of this flavonoid in water may be a limiting factor for its biological activities. Cyclodextrins are cyclic oligosaccharides whose chemical structure allows the incorporation of lipophilic substances in their cavity, giving these molecules greater stability and bioavailability. OBJECTIVE: To evaluate the anti-inflammatory and neuroprotective effect of flavonoid apigenin and conjugates of apigenin with β-cyclodextrins in an in vitro model of neuroinflammation in spinal cord cells. MATERIALS AND METHODS: In this work β-cyclodextrin (β-CD) and three other derivatives were used. The cytotoxicity of apigenin (API) and conjugates of apigenin with β-cyclodextrins (API-cd’s) was evaluated by MTT assay in PC-12 cells and spinal cord cells in a series of concentrations (0.1-100μM) for 24h. After its characterization, the primary culture of the spinal cord was submitted to inflammatory damage by LPS, and subsequently treated with apigenin and the best conjugates of apigenin. The investigation of changes in markers associated with neuroinflammation was performed by immunofluorescence. The nitric oxide production was analyzed with the supernatants of the experimental groups. The analysis of cell morphology was performed by phase contrast microscopy, Rosenfeld staining and immunofluorescence. Cell migration was evaluated by the wound healing assay and immunofluorescence. RESULTS AND DISCUSSION: The API and API-cd’s did not promote cytotoxic action in PC-12 cells at the concentrations tested. It was observed that three conjugates increased the viability of PC-12 cells, mainly at the concentration of 10μM. The API and API-cd’s did not induce cytotoxicity in primary culture of the spinal cord at the concentrations tested. The primary culture of spinal cord of neonate rats presents morphological diversity of astrocytes, microglia, and neurons, as well as cell growth clusters. Spinal cord cells were subjected to inflammatory damage by LPS at 5 μg/mL for 12 hours. The API and API-cd 52 decreased the expression of IBA-1 and CD-68-positive cells after LPS-induced damage. Two API-cd’s significantly reduced nitric oxide levels. Two API-cd’s significantly reduced the number of S100β-positive cells. CONCLUSIONS: Apigenin and apigenin conjugates appear to protect spinal cord cells in an in vitro model of neuroinflammation.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado da Bahia (FAPESB)pt_BR
dc.description.sponsorshipPró-Reitoria de Pesquisa, Criação e Inovação (PROPCI) - Edital JOVEMPESQ – Edital PROPCI-PROPG/UFBA 007/202.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.subjectLesão medularpt_BR
dc.subjectTraumatismos da Medula Espinalpt_BR
dc.subjectApigeninapt_BR
dc.subjectNeuroproteçãopt_BR
dc.subject.otherspinal cord injurypt_BR
dc.subject.otherSpinal Cord Injuriespt_BR
dc.subject.otherApigeninpt_BR
dc.subject.otherNeuroprotectionpt_BR
dc.titleInvestigação dos efeitos da apigenina conjugada a ciclodextrinas em modelo in vitro de neuroinflamação em células da medula espinhalpt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação Multicêntrico em Bioquímica e Biologia Molecular (PMBqBM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICASpt_BR
dc.contributor.advisor1Nascimento, Ravena Pereira do-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-2915-3030pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2974904635974456pt_BR
dc.contributor.advisor-co1Costa, Silvia Lima-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-8975-3871pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8965253841041518pt_BR
dc.contributor.referee1Nascimento, Ravena Pereira do-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-2915-3030pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2974904635974456pt_BR
dc.contributor.referee2Santos, Balbino Lino dos-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-6430-229Xpt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3758218831795212pt_BR
dc.contributor.referee3Borges, Julita Maria Pereira-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-3969-8146pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1160140281861469pt_BR
dc.creator.Latteshttps://lattes.cnpq.br/9580233863260982pt_BR
dc.description.resumoINTRODUÇÃO: A lesão medular é um grave dano ao sistema nervoso central associado a altas taxas de morbimortalidade, dependência física e encargos financeiros. A inflamação é a principal característica da lesão secundária que proporciona uma cascata de eventos celulares e moleculares que aumentam a área da lesão, agravando os déficits neurológicos e a recuperação tecidual. A literatura apresenta diferentes modelos de estudos no sistema nervoso central nos quais a apigenina tem demonstrado efeitos benéficos. No entanto, há poucas pesquisas sobre o papel neuroprotetor da apigenina na lesão medular, e, além disso, a baixa solubilidade desse flavonoide em água pode ser um fator limitante para suas atividades biológicas. As ciclodextrinas são oligossacarídeos cíclicos cuja estrutura química possibilita a incorporação de substâncias lipofílicas em sua cavidade, conferindo a essas moléculas maior estabilidade e biodisponibilidade. OBJETIVO: Avaliar o efeito anti-inflamatório e neuroprotetor do flavonoide apigenina e de conjugados de apigenina com β-ciclodextrinas em modelo in vitro de neuroinflamação em células da medula espinhal. MATERIAIS E MÉTODOS: Neste trabalho foram utilizadas β-ciclodextrina (β-CD) e outros três derivados. A citotoxicidade da apigenina (API) e dos conjugados de apigenina com β-ciclodextrinas (API-cd’s) foi avaliada pelo ensaio MTT em células PC-12 e células da medula espinhal em uma série de concentrações (0,1-100μM) por 24h. Após sua caracterização, a cultura primária da medula espinhal foi submetida ao dano inflamatório por LPS, e, posteriormente, tratada com apigenina e os melhores conjugados de apigenina. A investigação de alterações em marcadores associados à neuroinflamação foi feita por imunofluorescência. Realizou-se análise da produção de óxido nítrico com os sobrenadantes dos grupos experimentais. A análise da morfologia celular foi realizada por microscopia de contraste de fase, coloração de Rosenfeld e imunofluorescência. A migração celular foi avaliada a partir do ensaio de ranhura e imunofluorescência. RESULTADOS E DISCUSSÃO: A API e API-cd’s não promoveram ação citotóxica em células PC-12 nas concentrações testadas. Observou-se que três conjugados aumentaram a viabilidade das células PC-12, principalmente na concentração de 10μM. A API e API-cd’s não induziram citotoxicidade em cultura primária da medula espinhal nas concentrações testadas. A cultura primária da medula espinhal de ratos neonatos constitui diversidade morfológica de astrócitos, microglia e neurônios, além de agrupamentos de crescimento celular. As células da medula espinhal foram submetidas ao dano inflamatório por LPS a 5 μg/mL durante 12 horas. A API e API-cd 52 diminuíram a expressão de células IBA-1 e CD-68-positivas após o dano induzido por LPS. Duas API-cd’s reduziram de forma significativa os níveis de óxido nítrico. Duas API-cd’s reduziram de forma significativa o número de células S100β-positivas. CONCLUSÕES: A apigenina e os conjugados de apigenina parecem proteger as células da medula espinhal em modelo in vitro de neuroinflamação.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.referencesABID, R.; GHAZANFAR, S.; FARID, A.; SULAMAN, S.M.; IDREES, M.; AMEN, R.A.; MUZAMMAL, M.; SHAHZAD, M.K.; MOHAMED, M.O.; KHALED, A.A.; SAFIR, W.; GHORI, I.; ELASBALI, A.M.; ALHARBI, B. Pharmacological Properties of 4', 5, 7Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways. Molecules., v. 27, n. 13, Jul 2022. DOI: 10.3390/molecules27134304. ADAMS, K.L.; GALLO, V. The Diversity and Disparity of the Glial Scar. Nat Neurosci, v. 21, n.1, p.9-15, 2018.DOI :10.1038/s41593-017-0033-9. ALEISSA, S. ;ONBAZ, F. ; ABALKHAIL ; M. ; ALHELAL ; F , ALHUMAID L, ALMUTLAQ M, ALNAQA F, SHAHEEN N. Neurological Impairment Recovery in Surgically Treated Patients With Nontraumatic Spinal Cord Injury. J Am Acad Orthop Surg Glob Res Rev., v. 6, n.8, 2022. AHUJA, C.S.; WILSON, J.R.; NORI, S.; KOTTER, M.R.N.; DRUSCHEL, C.; CURT, A.; FEHLINGS, M.G. Traumatic Spinal Cord Injury. Nature Reviews, v.3, n. 17018, Apr 2017. DOI: 10.1038/nrdp.2017.18. AHUJA, C.S.; NORI, S.; TETREAULT, L.; WILSON, J.; KWON, B.; HARROP, J.; CHOI, D.; FEHLINGS, M.G. Traumatic Spinal Cord Injury- Repair and Regeneration. Neuro Surgery, v. 80, n. 3, mar. 2017. DOI: 10.1093/neuros/nyw080. AL-ALI, H.; BECKERMAN, S.R.; BIXBY, J.L.; LEMMON, V.P. In vitro models of axon regeneration. Exp Neurol., USA, v. 287, p. 423-34, Jan. 2017. DOI: 10.1016/j.expneurol.2016.01.020. ALIZADEH, A.; DYCK, S.M.; KARIMI-ABDOLREZAEE, S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front. Neurol., v. 10, 2019. DOI: doi: 10.3389/fneur.2019.00282. ALLEN, A.R. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. Journal of the American Medical Association, 1911. ALVARADO-SANCHEZ, B.G.; SALGADO-CEBALLOS, H.; TORRES-CASTILLO, S.; RODRIGUEZ-SILVERIO, J.; LOPEZ-HERNANDEZ, M.E.; QUIROZ-GONZALEZ, S.; SANCHEZ-TORRES, S.; MONDRAGÓN-LOZANO, R.; FABELA-SANCHEZ, O. Electroacupuncture and curcumin promote oxidative balance and motor function recovery in rats following traumatic spinal cord injury. Neurochem Res, v. 44, n. 2, p. 498-506, 2019. DOI: 10.1007/s11064-018-02704-1. AN, N.; YANG, J.; WANG, H.; SUN, S.; WU, H.; LI, L.; LI, M. Mechanism of mesenchymal stem cells in spinal cord injury repair through macrophage polarization. Cell & Bioscience, v. 11, n. 1, 2021. DOI: 10.1186/s13578-021-00554-z. ANDERSON, M.A.; BURDA, J.E.; REN, Y.; AO, Y.; O'SHEA, T.M; KAWAGUCHI, R.; COPPOLA, G.; KHAKH, B.S.; DEMING, T.J.; SOFRONIEW, M.V. Astrocyte scar formation aids central nervous system axon regeneration. Nature., v. 532, n. 7598, p. 195-200, 2016. DOI: 10.1038/nature17623. ANDERSON, M.A. Targeting Central Nervous System Regeneration With Cell Type Specificity. Neurosurg Clin N Am, v. 32, n. 3, p. 397-405, 2021. DOI: 10.1016/j.nec.2021.03.011. 77 ANGULO, P.; KAUSHIK, G.; SUBRAMANIAM, D.; DANDAWATE, P.; NEVILLE, K.; CHASTAIN, K.; ANANT, S. Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy. J Hematol Oncol., v. 10, n.1, 2017. DOI: 10.1186/s13045-016-0373-z. ANJUM, A.; YAZID, M.D.; FAUZI DAUD, M.; IDRIS, J.N.G.; NAICKER, A.; ISMAIL, O.H.R; ATHI KUMAR, R.K.; LOKANATHAN, Y. Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci., v. 21, n. 20, 2020. DOI: 10.3390/ijms21207533. ARGANDA-CARRERAS, I.; FERNÁNDEZ-GONZÁLEZ, R.; MUÑOZ-BARRUTIA, A.; ORTIZ-DE-SOLORZANO, C. 3D reconstruction of histological sections: Application to mammary gland tissue. Microsc Res Tech, v. 73, p. 1019–1029, 2010. DOI: 10.1002/jemt.20829. BAL-PRICE, A.; PISTOLLATO, F.; SACHANA, M.; BOPP, S.K.; MUNN, S.; WORTH, A. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol Appl Pharmacol., p. 7-18, 2018. DOI: 10.1016/j.taap.2018.02.008. BICAN, O.; MINAGAR, A.; PRUITT, A.A. The spinal cord: a review of functional neuroanatomy. Neurol Clin., v. 1, n. 1, 2013. DOI: 10.1016/j.ncl.2012.09.009. BIRRU, R.L.; BEIN, K.; BONDARCHUK, N.; WELLS, H.; LIN, Q.; DI, Y.P.; LEIKAUF, G.D. Antimicrobial and Anti-Inflammatory Activity of Apple Polyphenol Phloretin on Respiratory Pathogens Associated with Chronic Obstructive Pulmonary Disease. Front Cell Infect Microbiol., v. 22, n.11, nov. 2021. DOI: 10.3389/fcimb.2021.652944. BLACK, J.A.; SONTHEIMER, H.; WAXMAN, S.G. Spinal cord astrocytes in vitro: phenotypic diversity and sodium channel immunoreactivity. Glia., v. 7, n.4, p.27285,1993. DOI: 10.1002/glia.440070403. BRASIL. Ministério da Saúde. Diretrizes de atenção à Pessoa com Lesão Medular. 2. ed. Brasília, DF, p. 7-62, 2015. BRATTON, A.C.; MARSHALL, E.K. A new coupling component for sulfanilamide determination. Journal of Biological Chemistry, v. 128, p. 537-550, 1939. SWIRE, M.; ASSINCK, P.; MCNAUGHTON, P.A.; LYONS, D.A.; FRENCHCONSTANT, C.; LIVESEY, M.R. Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length. J Neurosci., v. 41, n.38, p. 7954-64, Sep 2021. DOI: 10.1523/JNEUROSCI.2463-20.2021. BANNERMAN, C.A.; GHASEMLOU, N. Spinal Cord Injury in the Mouse Using the Infinite Horizon Spinal Cord Impactor. Methods Mol Biol., p. 193-201, 2022. DOI: 10.1007/978-1-0716-2409-8_12. BRENNAN, F.H.; GUAN, Z.; POPOVICH, P.G. Microglia limit lesion expansion and promote functional recovery after spinal cord injury in mice. BioRxiv., 2018. BROCKIE, S.; HONG, J.; FEHLINGS, M.G. The Role of Microglia in Modulating Neuroinflammation after Spinal Cord Injury. Int J Mol Sci., v.22, n. 18, 2021. 78 BELLVER-LANDETE, V. ;BRETHEAU, F. ; MAILHOT, B. ; VALLIERES, N. ; LESSARD, M. ; JANELLE, M.E. ; VERNOUX, N. ; TREMBLAY, M.È. ; FUEHRMANN, T. ; SHOICHET, M.S. ; LACROIX, S. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat. Commun., 2019. DOI: 10.1038/s41467-019-08446-0. BUTT, A.M.; PAPANIKOLAOU, M.; RIVERA, A. Physiology of Oligodendroglia. Adv Exp Med Biol., v. 1175, p. 117-128, 2019. DOI: 10.1007/978-981-13-9913-8_5. CASSIDY, A.; MINIHANE, A. M. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am. J. Clin. Nutr., v. 105, p. 10-22, 2016. CHEN, Y.; HE, Y.; DEVIVO, M. J. Changing demographics and injury profile of new traumatic spinal cord injuries in the United States. Arch. Phys. Med. Rehabil., v. 97, p. 1610–1619, 2016. CHEN, J.F.; WANG, F.; HUANG, N.X.; XIAO, L, ; MEI, F. Oligodendrocytes and myelin: Active players in neurodegenerative brains? Dev Neurobiol., China, v. 82, n. 2, p. 160-74, Mar 2022. DOI: 10.1002/dneu.22867. CHERIYAN, T. et al. Spinal cord injury models: a review. Nature Publishing Group, 2014. CHO, T.A. Spinal cord functional anatomy. Continuum (Minneap Minn)., p. 13-35, 2015. DE AMORIM, V.C.M.; JÚNIOR, M.S.O.; DA SILVA, A.B.; DAVID, J.M.; DAVID, J.P.L.; DE FÁTIMA DIAS COSTA, M.; BUTT, A.M.; DA SILVA, V.D.A.; COSTA, S.L. Agathisflavone modulates astrocytic responses and increases the population of neurons in an in vitro model of traumatic brain injury. Naunyn Schmiedebergs Arch Pharmacol., v. 393, n.10, p. 1921-30, 2020. DOI: 10.1007/s00210-020-01905-2. DE LUCA, C.; COLANGELO, A.M.; VIRTUOSO, A.; ALBERGHINA, L.; PAPA, M. Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. Int J Mol Sci., Italy, v. 21, n. 4, Feb 2020. DOI: 10.3390/ijms21041539. DIAS, D.O.; GORITZ, C. Fibrotic Scarring Following Lesions to the Central Nervous System. Matrix Biol, p. 561-70, 2018. DOS SANTOS SOUZA, C.; GRANGEIRO, M.S.; LIMA PEREIRA, E.P.; DOS SANTOS, C.C.; DA SILVA, A.B.; SAMPAIO, G.P.; RIBEIRO FIGUEIREDO, D.D.; DAVID, J.M.; DAVID, J.P.; DA SILVA, V.D.A; BUTT, A.M.; LIMA COSTA, S. Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicology, v. 65, p. 85-97, mar. 2018. DOI: 10.1016/j.neuro.2018.02.001 DUAN, K.; LIU, S.; YI, Z.; LIU, H.; LI, J.; SHI, J.; JI, L.; XU, B.; ZHANG, X.; ZHANG, W. S100-β aggravates spinal cord injury via activation of M1 macrophage phenotype. J Musculoskelet Neuronal Interact., China, v. 21, n.3, p. 401-12, Sep 2021. DUNCAN, G.J.; MANESH, S.B.; HILTON, B.J.; ASSINCK, P.; PLEMEL, J.R.; TETZLAFF, W. The fate and function of oligodendrocyte progenitor cells after 79 traumatic spinal cord injury. Glia., v. 68, n. 2, p. 227-245, Feb 2020. DOI: 10.1002/glia.23706. ELBAZ, B.; POPKO, B. Molecular Control of Oligodendrocyte Development. Trends Neurosci., v. 42, n. 4, p. 263-277, 2019. DOI: 10.1016/j.tins.2019.01.002. ELI, I.; LERNER, D.P.; GHOGAWALA, Z. Acute Traumatic Spinal Cord Injury. Neurol Clin., USA, v. 39, n. 2, p. 471-488, May 2021. DOI: 10.1016/j.ncl.2021.02.004 ENDO, F.; KASAI, A.; SOTO, J.S. et al. Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science, v. 378, 2022. ESCARTIN, C. et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci., v. 24, n.3, p. 312-325, 2021. FAN, B. et al. Microenvironment Imbalance of Spinal Cord Injury. Cell Transplantation, v. 27, n.6, p. 853–866, 2018. FAN, X.; FAN, Z.; YANG, Z.; HUANG, T.; TONG, Y.; YANG, D.; MAO, X.; YANG, M. Flavonoids-Natural Gifts to Promote Health and Longevity. Int J Mol Sci., China, v. 23, n. 4, Feb 2022. DOI: 10.3390/ijms23042176. FARIDAALEE, G.; KEYGHOBADI, KHAJEH, F.K. Serum and Cerebrospinal Fluid Levels of S-100β Is A Biomarker for Spinal Cord Injury; a Systematic Review and Meta-Analysis. Arch Acad Emerg Med., Iran, v. 7, n. 1, Feb 2019. FEHLINGS, M.G. et al. Efficacy and Safety of Methylprednisolone Sodium Succinate in Acute Spinal Cord Injury: A Systematic Review. Global Spine Journal, v. 3, n. 3, p. 116-137, 2017. FENG, W.; HAO, Z.; LI, M.J.F. Isolation and Structure Identification of Flavonoids. Flavonoids - From Biosynthesis to Human Health. Flavonoids- From Biosynthesis to Human Health. InTech., 2017. FERNANDES, R. J. et al. Análise da capacidade de autocuidado para higiene de pessoas com lesão medular. Rev. Cuba. Enferm, v. 33, n.4, 2017. GAUDET, A.D.; FONKEN, L.K. Glial Cells Shape Pathology and Repair After Spinal Cord Injury. Neurotherapeutics., v. 15, n.3, p. 554-577, 2018. GERBER, Y.N.; SAINT-MARTIN, G.P.; BRINGUIER, C.M. Inhibition Reduces Microglia Proliferation, Promotes Tissue Preservation and Improves Motor Recovery After Spinal Cord Injury. Front Cell Neurosci., v. 16, n.12, 2018. GRIESS, P. Bemerkungen zu der abhandlung der H.H., Weselsky und Benedikt. “Ueber einige azoverbindungen.”. Chem Ges, v.12, p. 426-428, 1879. HACHEM, L.D.; AHUJA, C.S.; FEHLINGS, M.G. Assessment and management of acute spinal cord injury: from point of injury to rehabilitation. J Spinal Cord Med, v. 40, p. 665–675, 2017. HAGEMEYER, N. et al. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol., v. 134, n. 3, p. 441-58, 2017. HAN, X. et al. Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol., v. 44, 2021. 80 HASHMI, S.S.; VAN STAALDUINEN, E.K.; MASSOUD, T.F. Anatomy of the Spinal Cord, Coverings, and Nerves. Neuroimaging Clin N Am., v. 32, n.4, 2022. HAYTA, E.; ELDEN, H. Acute spinal cord injury: a review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat., v. 87, p. 25-31, 2018. HE, X.; LI, Y.; DENG, B.; LIN, A.; ZHANG, G.; MA, M.; WANG, Y.; YANG, Y.; KANG, X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif., China, v. 55, n. 9, Sep 2022. DOI: 10.1111/cpr.13275. HEILAND, D.H. et al. Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nat. Commun, v. 10, 2019. HELLENBRAND, D.J. Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration. J Neuroinflammation., v. 18, n. 1, 2021. HENG, P.W.S. Controlled release drug delivery systems. Pharm Dev Technol., Singapore, v. 23, n. 9, Nov 2018. DOI: 10.1080/10837450.2018.1534376 HOU, J. et al. Heterogeneity analysis of astrocytes following spinal cord injury at single-cell resolution. The FASEB Journal, v. 36, 2022. HUANG, C.H. et al. The natural flavonoid apigenin suppresses Th1- and Th2-related chemokine production by human monocyte THP-1 cells through mitogen-activated protein kinase pathways. J Med Food., v. 13, n. 2, p. 391-398, abr. 2010. HUANG, C.S. et al. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch. Toxicol., v. 87, p. 167178, 2013. HUANG, Y. et al. Preparation of inclusion complex of apigenin-hydroxypropyl-βcyclodextrin by using supercritical antisolvent process for dissolution and bioavailability enhancement. Int J Pharm., v. 511, n. 2, p. 921-30, 2016. HUBER, L.S.; RODRIGUEZ-AMAYA, D.B. Flavonóis e flavonas: fontes brasileiras e fatores que influenciam a composição em alimentos. Alim. Nutr., v.19, n.1, p. 97108, jan./mar. 2008. ITALIANI, P.; BORASCHI, D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol., 2014. ITO, D. et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol. Brain Res., v. 57, p.1-9, 1998. JANSOOK, P., KURKOV, S.V., LOFTSSON, T. Cyclodextrins as solubilizers: formation of complex aggregates. J. Pharm. Sci., v. 99, n. 2, p. 719-769, 2010. JANSOOK, P.; OGAWA, N.; LOFTSSON, T. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm., v. 535, p. 272-284, 2018. 81 JIANG, J.; WANG, G. Matrine protects PC12 cells from lipopolysaccharide-evoked inflammatory injury via upregulation of miR-9. Pharm Biol., China, v. 58, n.1, p.31420, Dec 2020. DOI: 10.1080/13880209.2020.1719165. JIANG, L.; WOODINGTON, B.; CARNICER-LOMBARTE, A.; MALLIARAS, G.; BARONE, D.G. Spinal cord bioelectronic interfaces: opportunities in neural recording and clinical challenges. J Neural Eng., United Kingdom, v. 19, n. 2, Apr 2022. DOI: 10.1088/1741-2552/ac605f. JIN, Z.; TIAN, L.; ZHANG, Y.; ZHANG, X.; KANG, J.; DONG, H.; HUANG, N.; PAN, L.; NING, B. Apigenin inhibits fibrous scar formation after acute spinal cord injury through TGFβ/SMADs signaling pathway. CNS Neurosci Ther., v. 28, n. 11, p. 1883-94, Nov 2022. DOI : 10.1111/cns.13929. JULLIAN, C. et al. Complexação de morin com três tipos de ciclodextrina. Um estudo termodinâmico e de reatividade. Spectrochim Acta A Mol Biomol Spectrosc., v. 71, n. 1, p.269-75, 2008. KARSY, M.; HAWRYLUK, G. Modern Medical Management of Spinal Cord Injury. Curr Neurol Neurosci Rep, v.19, n. 65, 2019. KASHYAP, D. et al. Apigenin: A natural bioactive flavone-type molecule with promising therapeutic function. J. Funct. Foods, v. 48, p. 457-471, 2018. KEILHOFF, G.; LUDWIG, C.; PINKERNELLE, J. Efeitos de Gynostemma pentaphyllum em neurônios motores da medula espinhal e células microgliais in vitro. Acta Histochem., v. 123, n. 6, 2021. KIGERL, K.A. et al. High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation. Brain Behav Immun., 2017. KONG, X.; GAO, J. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. J Cell Mol Med, v. 21, n.5, p. 941-954, 2017. KOVACS, T. et al. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics., v. 22, n. 14, 2022. KORZHEVSKII, D.E.; KIRIK, O.V. Brain microglia and microglial markers. Neurosci. Behav. Physiol., p. 284-290, 2016. KRONER, A.; ROSAS-ALMANZA, J. Role of microglia in spinal cord injury. Neurosci Lett., v. 14, 2019. KUHN, S. et al. Oligodendrocytes in Development, Myelin Generation and Beyond. Cells., v. 8, n. 11, 2019. KUMAR, P.; NAGARAJAN, A.; UCHIL, PD. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb Protoc., v. 6, 2018. KWON, H.S.; KOH, S.H. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener., v. 9, n. 1, 2020. DOI: 10.1186/s40035-020-00221-2. 82 LANGEH, U.; SINGH, S. Targeting S100B Protein as a Surrogate Biomarker and its Role in Various Neurological Disorders. Curr Neuropharmacol., India, v. 19, n. 2, p. 265-77, 2021. DOI: 10.2174/1570159X18666200729100427. LEE, H. et al. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli. J. Microbiol. Biotechnol., v. 25, p. 1442-1448, 2015. LIDDELOW, S.A.; BARRES, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity, v. 46, n. 6, p. 957-967, 2017. LIAO, K.K. et al. Curcuminoids promote neurite outgrowth in PC12 cells through MAPK/ERK- and PKC-dependent pathways. J Agric Food Chem., v. 60, n.1, p. 43343, 2012. LI, J. et al. Study and characterization of the antioxidant activity of the inclusion complex of apigenin with β-cyclodextrin and 2-hydroxylpropyl-β-cyclodextrin in solution. J Invest Biochem, v. 3, 2014. LIMA, R.; MONTEIRO, A.; SALGADO, A.J.; MONTEIRO, S.; SILVA, N.A. Pathophysiology and Therapeutic Approaches for Spinal Cord Injury. Int J Mol Sci., Portugal, v. 23, n. 22, Nov 2022. DOI: 10.3390/ijms232213833. LIU, W.; FENG, Y.; YU, S.; FAN, Z.; LI, X.; LI, J.; YIN, H. The Flavonoid Biosynthesis Network in Plants. Int J Mol Sci., v. 22, n. 23, Nov 2021. DOI: 3390/ijms222312824. LI, Q.; BARRES, BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol., 2017. LI, X.; LI, M.; TIAN, L.; CHEN, J.; LIU, R.; NING, B. Reactive Astrogliosis: Implications in Spinal Cord Injury Progression and Therapy. Oxid Med Cell Longev., v. 19, Aug 2020. DOI: 10.1155/2020/9494352. MACHOVA, L.U. et al. A green tea polyphenol epigallocatechin-3- gallate enhances neuroregeneration after spinal cord injury by altering levels of inflammatory cytokines. Neuropharmacology, v. 126, p. 213-233, 2017. MAGGIONI, D. et al. Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int J Oncol., v. 43, n. 5, p. 1675-82, 2013. MALON, J.T.; CAO, L. Preparation of Primary Mixed Glial Cultures from Adult Mouse Spinal Cord Tissue. J Vis Exp., v. 19, n. 117, nov. 2016. MAMUN, A.A. et al. Advances in immunotherapy for the treatment of spinal cord injury. Immunobiology, v. 226, n. 1, 2020. MASGRAU, R. et al. Should We Stop Saying 'Glia' and 'Neuroinflammation’? Trends Mol Med., v. 23, n. 6, p.486-500, 2017. MA, S. et al. Geniposide protects PC12 cells from lipopolysaccharide-evoked inflammatory injury via up-regulation of miR-145-5p. Artif Cells Nanomed Biotechnol., v. 47, n.1, 2019. MICHETTI, F.; D'AMBROSI, N.; TOESCA, A.; PUGLISI, M.A.; SERRANO, A.; MARCHESE, E.; CORVINO, V.; GELOSO, M.C. The S100B story: from biomarker to active factor in neural injury. J Neurochem., Italy, v. 148, n. 2, p. 168-87, Jan 2019. Doi: 10.1111/jnc.14574. 83 MILLER, R.H.; SZIGETI, V. Clonal analysis of astrocyte diversity in neonatal rat spinal cord cultures. Development., v. 113, n.1, p. 353-62, 1991. MOEENDARBARY, E. et al. The soft mechanical signature of glial scars in the central nervous system. Nat Commun., 2017. MOOSAVI, S. et al. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Devel Ther., v. 21, n. 10, p. 23-42, 2015.. MORI, I. et al. Upregulated Expression of Iba1 Molecules in the Central Nervous System of Mice in Response to Neurovirulent Influenza A Virus Infection. Microbiol. Immunol., v. 44, p. 729-735, 2000. MOSSMAN, T. Rapid colorimetric assay for cellular growth and survivals: Application to proliferation and cytotoxicity assays. J Immunol Methods,p. 55-63, 1983. MURA, P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int J Pharm., Italy, Apr 2020. DOI: 10.1016/j.ijpharm.2020.119181. NABAVI, S.F. et al. Apigenin as neuroprotective agent: Of mice and men. Pharmacological Research, v. 128, p. 359–365, 2018. NARAYANAN, G. et al. Cyclodextrin-based nanostructures. Progress in Materials Science, v. 124, 2022. NENE, Y.; JILANI, T.N. Neuroanatomy, Conus Medullaris. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2023. NISHIYAMA, A.; SHIMIZU, T.; SHERAFAT, A.; RICHARDSON, W.D. Life-long oligodendrocyte development and plasticity. Semin Cell Dev Biol., v. 116, p. 35-47, Aug 2021. DOI: 10.1016/j.semcdb.2021.02.004. OHSAWA, K. et al. Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. J. Cell Sci., v. 113, 2000. OHSAWA, K. et al. Microglia/macrophage-specific protein Iba1 binds to fimbrin and enhances its actin-bundling activity. J. Neurochem., v. 88, p.844-856, 2004. OLIVEIRA, V.M. et al. Quercetin and rutin as potential agents antifungal against Cryptococcus spp. Braz. J. Biol., v. 76, p. 1029–1034, 2016. OLIVEIRA, R.; SANTOS, D.; COELHO, P. Ciclodextrinas: formação de complexos e sua aplicação farmacêutica. Revista da Faculdade de Ciências da Saúde, v. 6, p. 70-83, 2009. OMELCHENKO, A.; SINGH, N.K.; FIRESTEIN, B.L. Current advances in in vitro models of central nervous system trauma. Curr Opin Biomed Eng., New Jersey, v. 14, p. 34-41, Jun 2020. DOI: 10.1016/j.cobme.2020.05.002. ORNANO, L. et al. Phytochemical analysis of non-volatile fraction of Artemisia caerulescens subsp. densiflora (Viv.) (Asteraceae), an endemic species of La Maddalena Archipelago (Sardinia–Italy). Nat. Prod. Res., v. 30, p. 920-925, 2016. 84 O’SHEA, T.M.; BURDA, J.E.; SOFRONIEW, M.V. Cell biology of spinal cord injury and repair. J Clin Invest., v. 127, n.9, p. 3259–3270, 2017. PANG, Q.M. et al. Effects of astrocytes and microglia on neuroinflammation after spinal cord injury and related immunomodulatory strategies. Int Immunopharmacol, 2022. PANG, Q.M. et al. Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar. Front Immunol., 2021. PAOLICELLI, R.S.; SIERRA, A.; STEVENS, B. Microglia states and nomenclature: A field at its crossroads. Neuron., v. 110, v. 21, p. 3458-3483, 2022. PATAR, A. et al. Análise de astrócitos reativos e proteoglicanos NG2 em modelos ex vivo de lesão medular em ratos. J Neurosci Métodos., p. 418-425, 2019. PAYNE, A. et al. Molecular Mechanisms of the Anti-Inflammatory Effects of Epigallocatechin 3-Gallate (EGCG) in LPS-Activated BV-2 Microglia Cells. Brain Sci., v. 13, n. 4, 2023. PEARCE, J.M. The development of spinal cord anatomy. Eur Neurol., v. 59, n. 6, 2008. PENG, Q. et al. Mitogen-activated protein kinase signaling pathway in oral cancer. Oncol. Lett., v. 15, p. 1379–1388, 2017. PETTIGREW, D.B.; SINGH, N.; KIRTHIVASAN, S. et al. The Role of Tissue Geometry in Spinal Cord Regeneration. Medicina Kaunas, v. 58, n.4, 2022. PILIPOVIĆ, K. Modeling Central Nervous System Injury In Vitro: Current Status and Promising Future Strategies. Biomedicines., v. 11, n. 1, 2022. POPIELEC, A.; LOFTSSON, T. Effects of cyclodextrins on the chemical stability of drugs. Int J Pharm., v. 531, n. 2, p. 532-42, 2017. POULEN, G. et al. Inibir a proliferação da microglia após lesão medular melhora a recuperação em camundongos e primatas não humanos. Teranóstica., v. 11, n. 18, 2021. PRINZ, M.; JUNG, S.; PRILLER, J. Microglia Biology: One Century of Evolving Concepts. Cell., v. 179, n. 2, p. 292-311, Oct 2019. DOI: 10.1016/j.cell.2019.08.053. RANSOHOFF, R.M. A Polarizing Question: Do M1 and M2 Microglia Exist? Nat. Neurosci., v. 19, p. 987–991, 2016. ROSENFELD, G. Corante pancrômico para hematologia e citologia clínica. Nova combinação dos componentes do May-Grünwald e do Giemsa num só corante de emprego rápido. Memórias do Instituto Butantan, v. 20, p. 329-334, 1947. RUA, R.; MCGAVERN, D.B. Advances in Meningeal Immunity. Trends Mol Med., v. 24, n.6, p. 542-559, 2018. RUZICKA, J. et al. Does combined therapy of curcumin and epigallocatechin gallate have a synergistic neuroprotective effect against spinal cord injury? Neural Regen Res., v. 13, n. 119, 2018. 85 SAHU, K.M.; PATRA, S.; SWAIN, S.K. Host-guest drug delivery by β-cyclodextrin assisted polysaccharide vehicles: A review. Int J Biol Macromol., India, v. 240, Jun 2023. DOI: 10.1016/j.ijbiomac.2023.124338. SALEHI, B. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci., v. 20, n. 1305, 2019. SEO, S.H. et al. Induction of caspase-dependent apoptosis by apigenin by inhibiting STAT3 signaling in HER2-overexpressing MDA-MB-453 breast cancer cells. Anticancer Res., v. 34, n.6, p. 2869-82, jun. 2014. SHARIFI-RAD, M. et al. Matricaria genus as a source of antimicrobial agents: From farm to pharmacy and food applications. Microbiol. Res., v. 215, p. 76-88, 2018. SHANK, C.D.; WALTERS, B.C.; HADLEY, M.N. Current Topics in the Management of Acute Traumatic Spinal Cord Injury. Neurocrit Care., v. 30, n. 2, p. 261-271, Apr 2019. DOI: 10.1007/s12028-018-0537-5. SHECHTER, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med., 2009. SHEN, N.; WANG, T.; GAN, Q.; LIU, S.; WANG, L.; JIN, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem., China, Jul 2022. DOI: 10.1016/j.foodchem.2022.132531. SHU, N.; ZHANG, Z.; WANG, X.; LI, R.; LI, W.; LIU, X.; ZHANG, Q.; JIANG, Z.; TAO, L.; ZHANG, L.; HOU, S. Apigenin Alleviates Autoimmune Uveitis by Inhibiting Microglia M1 Pro-Inflammatory Polarization. Invest Ophthalmol Vis Sci., v. 64, n. 5, 2023. DOI: 10.1167/iovs.64.5.21. SIBINGA, C.T.S.; SEGHATCHIAN, J. Cell culture - Fact and fiction. Transfus Apher Sci., v. 59, n. 4, Aug 2020. DOI: 10.1016/j.transci.2020.102860. SIDDIQUI, A.M.; KHAZAEI, M.; FEHLINGS, M.G. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. Prog Brain Res., v. 218, p. 15-54, 2015. SIEBERT, J.R.; OSTERHOUT, D.J. Select Neurotrophins Promote Oligodendrocyte Progenitor Cell Process Outgrowth in the Presence of Chondroitin Sulfate Proteoglycans. J Neurosci Res, v. 99, n.4, p. 1009-23, 2021. SILVA, A.R. et al. The flavonoid rutin induces astrocyte and microglia activation and regulates TNF-alpha and NO release in primary glial cell cultures. Cell Biol Toxicol., v. 24, n.1, p.75-86, 2008. SIMON, C.; GOTZ, M.; DIMOU, L. Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia., v. 59, n. 6, p. 86981, 2011. SLOVINSKA, L.; BLASKO, J.; NAGYOVA, M. In Vitro Models of Spinal Cord Injury. Slovakia, 2016. 86 SOUZA, V.C. et al. A new thioglycolic ester β-cyclodextrin/PdCl2 in water: An accessible catalyst for the Suzuki-Miyaura coupling reaction, Carbohydrate Polymers, v. 301, 2023. STADELMANN, C.; TIMMLER, S.; BARRANTES-FREER, A.; SIMONS, M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev., Germany, v. 99, v. 3, p. 1381-1431, Jul 2019. DOI:10.1152/physrev.00031.2018. SUN, Y. et al. Notoginsenoside R1 alleviates lipopolysaccharide-triggered PC-12 inflammatory damage via elevating microRNA-132. Artif Cells Nanomed Biotechnol., v. 47, n. 1, p. 1808-14, 2019. SUVARNA, V. Complexação de fitoquímicos com ciclodextrinas e seus derivados - uma atualização. Farmacoterapia Biomed., 2022. SUVARNA, V.; GUJAR, P.; MURAHARI, M. Complexação de fitoquímicos com derivados de ciclodextrina - Um insight. Farmacoterapia Biomed., p.1122-1144, 2017. TAN, S.; FAULL, R.L.M.; CURTIS, M.A. Os tratos, citoarquitetura e neuroquímica da medula espinhal. Anat Rec (Hoboken), v. 306, n. 4, 2023. TOMMASINI, S. et al. Improvement in solubility and dissolution rate of flavonoids by complexation with beta-cyclodextrin. J Pharm Biomed Anal., v. 35, n. 2, 2004. TORTORA, G.J.; DERRICKSON, B. Anatomia e Fisiologia. 14° ed. Rio de Janeiro: Guanabara Koogan, 2016. TRAN, A.P.; WARREN, P.M.; SILVER, J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res., v. 387, n. 3, p. 319-36, Mar 2022. DOI: 10.1007/s00441-021-03477-w. TUMANI, H.; HUSS, A.; BACHHUBER, F. The cerebrospinal fluid and barriers - anatomic and physiologic considerations. Handb Clin Neurol., v. 146, p. 21-32, 2017. VENDITTI, A. et al. Phytochemical analysis of non-volatile fraction of Artemisia caerulescens subsp. densiflora (Viv.) (Asteraceae), an endemic species of La Maddalena Archipelago (Sardinia–Italy). Nat. Prod. Res., v. 30, p. 920–925, 2016. VENDITTI, A. et al. Volatile components, polar constituents and biological activity of tansy daisy (Tanacetum macrophyllum (Waldst. et Kit.). Schultz Bip. Ind. Crop. Prod., v. 118, p. 225-235, 2018. VENKATESH, K. et al. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell and Tissue Research, v. 377, p. 125-151, 2019. WANG, F.; LIU, J.C.; ZHOU, R.J.; ZHAO, X.; LIU, M.; YE, H.; XIE, M.L. Apigenin protects against alcohol-induced liver injury in mice by regulating hepatic CYP2E1mediated oxidative stress and PPARα-mediated lipogenic gene expression. Chem Biol Interact., v. 275, p. 171-177, Sep 2017. DOI: 10.1016/j.cbi.2017.08.006. WANG, M.; FIRRMAN, J.; LIU, L.; YAM, K. A Review on Flavonoid Apigenin: Dietary Intake, ADME, Antimicrobial Effects, and Interactions with Human Gut Microbiota. Biomed Res Int., USA, Oct 2019. DOI: 10.1155/2019/7010467. 87 WEN, Q.H. et al. Inhibition of Biofilm Formation of Foodborne Staphylococcus aureus by the Citrus Flavonoid Naringenin. Foods, v. 10, n. 11, out. 2021. WIATRAK, B. et al. PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells., v9, n.4, 2020. WU, F.; ZHANG, P.; ZHOU, G. O envolvimento de EGR1 na apoptose de neurônios no modelo in vitro de lesão medular via up-regulation de BTG2. Neurol Res., v. 45, n. 7, p. 646-654, 2023. WU, Q.; LI, W.; ZHAO, J.; SUN, W.; YANG, Q.; CHEN, C.; XIA, P.; ZHU, J.; ZHOU, Y.; HUANG, G.; YONG, C.; ZHENG, M.; ZHOU, E.; GAO, K. Apigenin ameliorates doxorubicin-induced renal injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother., 2021. DOI: 10.1016/j.biopha.2021.111308. WUPPER, S.; LUERSEN, K.; RIMBACH, G. Cyclodextrins, Natural Compounds, and Plant Bioactives-A Nutritional Perspective. Biomolecules., v. 11, n.3, 2021. XIE, Y. et al. Chinese Angelica Polysaccharide (CAP) Alleviates LPS-Induced Inflammation and Apoptosis by Down-Regulating COX-1 in PC12 Cells. Cell Physiol Biochem., v. 49, n.4, p. 1380-88, 2018. YANG, C.; SONG, J.; HWANG, S.; CHOI, J.; SONG, G.; LIM, W. Apigenin enhances apoptosis induction by 5-fluorouracil through regulation of thymidylate synthase in colorectal cancer cells. Redox Biol., v. 47, Nov 2021. DOI: 10.1016/j.redox.2021.102144. YANG, T et al. Astrocytic Reprogramming Combined With Rehabilitation Strategy Improves Recovery From Spinal Cord Injury. FASEB J, v. 34, n. 11, 2020. YANG, X. et al. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz. J. Med. Biol. Res., v. 52, 2019. ZAKARYAN, H. et al. Flavonoids: promising natural compounds against viral infections. Arch Virol., v. 162, n. 9, 2017. ZHANG, F.; LI, F.; CHEN, G. Neuroprotective effect of apigenin in rats after contusive spinal cord injury. Neurol Sci., China, v. 35, n. 4, p.583-8, Apr 2014. DOI: 10.1007/s10072-013-1566-7. ZHANG, G.; LIU, Y.; XU, L.; SHA, C.; ZHANG, H.; XU, W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol., China, v. 19, n. 1, Jan 2019. DOI: 10.1186/s12896-019-0502-1. ZHANG, Y.; AL MAMUN, A.; YUAN, Y.; LU, Q.; XIONG, J.; YANG, S.; WU, C.; WU, Y.; WANG, J. Acute spinal cord injury: Pathophysiology and pharmacological intervention. Molecular Medicine Reports, China, v. 23, n. 6, Apr 2021. DOI: 10.3892/mmr.2021.12056. ZHANG, Z.; WAN, F.; ZHUANG, Q.; ZHANG, Y.; XU, Z. Suppression of miR-127 protects PC-12 cells from LPS-induced inflammatory injury by downregulation of PDCD4. Biomed Pharmacother., China, v. 96, p. 1154-62, Dec 2017. DOI: 10.1016/j.biopha.2017.11.107. 88 ZHAO, G.; HAN, X.; CHENG, W.; NI, J.; ZHANG, Y.; LIN, J.; SONG, Z. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol Rep., v. 37, n. 4, p. 2277-2285, 2017. DOI: 10.3892/or.2017.5450. ZHOU, J.; LI, Z.; ZHAO, Q.; WU, T.; ZHAO, Q.; CAO, Y. Knockdown of SNHG1 alleviates autophagy and apoptosis by regulating miR-362-3p/Jak2/stat3 pathway in LPS-injured PC12 cells. Neurochem Res., China, v. 46, n.4, p. 945-956, Apr 2021. DOI: 10.1007/s11064-020-03224-7. ZHOU, X. et al. Highly efficient method for Suzuki reactions in aqueous media. ACS Omega, v. 3, n. 4, p. 4418-4422, 2018. ZHU, S.; ZHOU, Z.; LI, Z.; SHAO, J.; JIAO, G.; HUANG, Y.E.; LIN; Y. Suppression of LINC00707 alleviates lipopolysaccharide-induced inflammation and apoptosis in PC12 cells by regulated miR-30a-5p/Neurod 1. Biosci Biotechnol Biochem., China, v. 83, n. 11, p. 2049-56, Nov 2019. DOI: 10.1080/09168451.2019.1637245.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PMBqBM)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Cinthia Cristina- Dissertação.pdf
Restrito até 2026-02-26
Dissertação (Mestrado)4,18 MBAdobe PDFVisualizar/Abrir Solicitar uma cópia


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.