Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/39225
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCarneiro, Jaiza Kênsuly Moura Pinheiro-
dc.date.accessioned2024-03-22T19:02:29Z-
dc.date.available2026-03-22-
dc.date.available2024-03-22T19:02:29Z-
dc.date.issued2023-12-12-
dc.identifier.citationCARNEIRO, Jaiza Kênsuly Moura Pinheiro. Associação de variantes genéticas do gene NELL1 com a presença da periodontite. 2023. 74 f. Dissertação (Mestrado em Processos Interativos dos Órgãos e Sistemas) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, 2023.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/39225-
dc.description.abstractIntroduction: Periodontitis is an inflammatory disease due to complex interactions between a dysbiotic oral microbiota and the host's immune response. Genetic, environmental, and systemic aspects may be associated with periodontitis. Candidate gene studies and genome-wide association studies (GWAS) seek to identify correlations between variants in genes and periodontitis. The NELL1 gene encodes a cytoplasmic protein that contains epidermal growth factor (EGF)-like repeats and its genetic variants may be involved in the regulation of differentiation and cell growth, related to the encoded NELL-1 protein. Purpose: Investigate the association between genetic variants of the NELL1 gene and periodontitis. Materials and Methods: A cross-sectional study was carried out with 506 unrelated adult individuals, classified as having the presence (n=117) or absence (n=389) of periodontitis, recruited through the Program for Asthma Control in Bahia (ProAR). Through a questionnaire and an interview, pieces of information were obtained about sociodemographic characteristics, habits and lifestyle, and medical and dental history. After the oral examination, individuals with at least 4 teeth with at least 1 site with a probing depth ≥ 4 mm, clinical attachment level ≥ 3 mm, and bleeding upon stimulation in the same location were classified as periodontitis. Genotyping was performed using the Illumina Infinium Multi-Ethnic kit. The association analysis was carried out in the Plink 1.9 software using multivariate logistic regression adjusted for age greater than or equal to 40 years, obesity, mouth breathing habits, use of dental floss, asthma, and ancestry. Results: Twenty-five variants of the NELL1 single nucleotide (SNV) gene were positively associated with periodontitis and 14 variants were negatively associated. Correlations referring to age, obesity, mouth breathing habits, dental flossing, and asthma were observed. The alleles of the variants rs10766721-A, rs74326837-A, and rs76391583-G were positively related to periodontitis. Variants rs6483735-A, rs919476-A, rs111375391-G were positively associated with periodontitis. The C allele of rs10766743 was negatively associated with periodontitis. In the rs34835859 variant, individuals with the C/A genotype in the additive model, who use dental floss, are 2.45 times more likely to develop periodontitis, (OR = 2.45; 95% CI = 1.17-5, 12; p-value = 0.026). People aged 40 years or older, with the G/G genotype in the rs7130084 variant, are 2.88 times more likely to develop periodontitis (OR = 2.88; 95% CI = 1.35 – 6.13; value p = 0.035) than people with the same genotype and age greater than or equal to 40 years. Conclusion: In this study, variants of the NELL1 gene were associated with periodontitis. In the gene-environment analysis, the covariates obesity, lack of flossing use, presence of asthma, and age greater than or equal to 40 years are linked to variants associated with the development of periodontitis. Future prospective studies should be carried out to test the hypothesis of the influence and functionality of these variants described in the present study.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUNIVERSIDADE FEDERAL DA BAHIApt_BR
dc.rightsAcesso Restrito/Embargadopt_BR
dc.subjectDoenças periodontaispt_BR
dc.subjectPeriodontitept_BR
dc.subjectFator de crescimento epidérmicopt_BR
dc.subjectPolimorfismo de nucleotídeo únicopt_BR
dc.subject.otherPeriodontal Diseasept_BR
dc.subject.otherPeriodontitispt_BR
dc.subject.otherEpidermal Growth Factorpt_BR
dc.subject.otherSingle nucleotide polymorphismpt_BR
dc.titleAssociação de variantes genéticas do gene NELL1 com a presença da periodontitept_BR
dc.title.alternativeAssociation of genetic variants of the NELL1 gene with the presence of periodontitispt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ:CIENCIAS DA SAUDEpt_BR
dc.contributor.advisor1Carlleto, Tatiane de Oliveira Teixeira Muniz-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-7998-2569pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/4215212379864482pt_BR
dc.contributor.advisor-co1Figueiredo, Camila Alexandrina Viana de-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-1356-6188pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4758550783703417pt_BR
dc.contributor.referee1Carlletto, Tatiane de Oliveira Teixeira Muniz-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-7998-2569pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4215212379864482pt_BR
dc.contributor.referee2Carneiro, Valdirene Leão-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-0655-3362pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7155021914090763pt_BR
dc.contributor.referee3Alves, Quiara Lovatti-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-7757-8407pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9889223737424815pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-5439-3175pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9433567864447442pt_BR
dc.description.resumoIntrodução: A periodontite é uma doença inflamatória que ocorre por interações complexas entre uma microbiota oral disbiótica e uma resposta imunológica do hospedeiro. Aspectos genéticos, ambientais e sistêmicos podem estar associados à periodontite. Estudos de genes candidatos e estudos de ampla associação do genoma (GWAS) buscam identificar associações entre variantes nos genes e a periodontite. O gene NELL1 codifica uma proteína citoplasmática que contém repetições semelhantes ao fator de crescimento epidérmico (EGF) e suas variantes genéticas podem estar envolvidas na regulação da diferenciação e do crescimento celular, relacionadas a proteína NELL-1 codificada. Objetivo: Investigar a associação entre variantes genéticas do gene NELL1 e a periodontite. Materiais e Métodos: Foi realizado um estudo transversal com 506 indivíduos adultos, não aparentados, classificados com presença (n=117) ou ausência (n=389) de periodontite, recrutados através do Programa para controle da Asma na Bahia (ProAR). Através de um questionário e entrevista, foram obtidas informações sobre características sociodemográficas, hábitos e estilo de vida, histórico médico e odontológico. Após a realização do exame oral, foram classificados com periodontite os indivíduos que apresentavam pelo menos 4 dentes com ao menos 1 sítio com profundidade de sondagem ≥ 4 mm; nível de inserção clínica ≥ 3 mm e sangramento ao estímulo no mesmo local. A genotipagem foi realizada utilizando o kit Illumina Infinium Multi-Ethnic. A análise de associação foi realizada no software Plink 1.9 através da regressão logística multivariada ajustada por idade maior ou igual a 40 anos, obesidade, hábito de respirar pela boca, uso de fio dental, asma e ancestralidade. Resultados: Foram associadas positivamente à periodontite 25 variantes de nucleotídeo único (SNV) do gene NELL1 e 14 variantes associadas negativamente. Foram observadas associações que dizem respeito à idade, obesidade, hábito de respiração bucal, uso de fio dental e asma. Os alelos das variantes rs10766721-A, rs74326837-A e rs76391583-G foram positivamente associados com a periodontite. As variantes rs6483735-A, rs919476-A e rs111375391-G foram positivamente associadas à periodontite. O alelo C do rs10766743 foi negativamente ligado a periodontite. Na variante rs34835859, indivíduos com o genótipo C/A no modelo aditivo, que utilizam o fio dental, apresentam 2,45 vezes a mais de chances de desenvolver periodontite, (OR = 2,45; IC95%= 1,17-5,12; valor de p = 0,026). Pessoas com idade maior ou igual a 40 anos, com genótipo G/G na variante rs7130084, possuem 2,88 vezes a mais de chances de desenvolver periodontite (OR = 2,88; IC95% = 1,35 – 6,13; valor de p = 0,035) do que pessoas com o mesmo genótipo e idade maior ou igual a 40 anos. Conclusão: Neste estudo, Variantes do gene NELL1 foram associadas à periodontite. Na análise de gene-ambiente, as covariáveis obesidade, o não uso do fio dental, a presença de asma e a idade superior ou igual a 40 anos foram vinculadas às variantes relacionadas ao desenvolvimento da periodontite. Estudos prospectivos futuros devem ser realizados para testar a hipótese da influência e funcionalidade dessas variantes descritas no presente estudo.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.references1. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038. 2. Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. Periodontol 2000. 2020;83(1):26-39. 3. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J Clin Periodontol. 2018;45 Suppl 20:S162-70. 4. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol. 2018;89 Suppl 1:S159-72. 5. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. The Lancet. 2005;366(9499):1809-20. 6. Zhang S, Yu N, Arce RM. Periodontal inflammation: Integrating genes and dysbiosis. Periodontol 2000. 2020;82(1):129-42. 7. Mehrotra N, Singh S. Periodontitis. StatPearls [Internet]; 2023 Agosto-. [cited 2023 Aug 9] Available from: https://www.ncbi.nlm.nih.gov/books/NBK541126. 8. Albandar JM. Epidemiology and risk factors of periodontal diseases. Dent Clin North Am. 2005;49(3 SPEC. ISS.):517–32. 9. Roberts FA, Darveau RP. Microbial protection and virulence in periodontal tissue as a function of polymicrobial communities: symbiosis and dysbiosis. Periodontol 2000. 2015;(1):18-27. 10. Shaddox LM, Morford LA, Nibali L. Periodontal health and disease: The contribution of genetics. Periodontol 2000. 2021;85(1):161-81. 65 11. Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000. 2015;69(1):7-17. Available from: https://onlinelibrary.wiley.com/doi/10.1111/prd.12104 12. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015 Jan;15(1):30-44. doi: 10.1038/nri3785. PMID: 25534621; PMCID: PMC4276050. 13. Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999;4(1):1-6. 14. Caton JG, Armitage G, Berglundh T, Chapple ILC, Jepsen S, Kornman KS, et al. A new classification scheme for periodontal and peri-implant diseases and conditions – Introduction and key changes from the 1999 classification. J Periodontol. 2018; 89 Suppl 1:S1-8. 15. Tonetti MS, Greenwell H, Kornman KS. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J Periodontol. 2018;89 Suppl 1:S159-72. 16. GBD. Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789-858. 17. Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. ScientificWorldJournal. 2020;2020:2146160. 18. Keller A, Rohde JF, Raymond K, Heitmann BL. Association between periodontal disease and overweight and obesity: a systematic review. J Periodontol. 2015;86(6):766-76. 19. Laxman VK, Annaji S. Tobacco use and its effects on the periodontium and periodontal therapy. J Contemp Dent Pract. 2008;9(7):97-107. 20. Coelho Rde S, Gusmão ES, Jovino-Silveira RC, Caldas Ade F. Profile of periodontal conditions in a Brazilian adult population. Oral Health Prev Dent. 2008;6(2):139-45. 21. Weatherspoon DJ, Borrell LN, Johnson CW, Mujahid MS, Neighbors HW, Adar SD. racial and ethnic differences in self-reported periodontal disease in the multi-ethnic study of atherosclerosis (MESA). Oral Health Prev Dent. 2016;14(3):249-57. 22. Toy VE, Uslu MO. Do genetic polymorphisms affect susceptibility to periodontal disease? A literature review. Niger J Clin Pract. 2019;22(4):445-53. 23. Bodineau A, Folliguet M, Séguier S. Tissular senescence and modifications of oral ecosystem in the elderly: risk factors for mucosal pathologies. Curr Aging Sci. 2009;2(2):109- 20. 66 24. Shiau HJ, Aichelmann-Reidy ME, Reynolds MA. Influence of sex steroids on inflammation and bone metabolism. Periodontol 2000. 2014;64(1):81-94. 25. Li Y, Du Z, Xie X, Zhang Y, Liu H, Zhou Z, et al. Epigenetic changes caused by diabetes and their potential role in the development of periodontitis. J Diabetes Investig. 2021;12(8):1326-35. 26. Thomas MS, Parolia A, Kundabala M, Vikram M. Asthma and oral health: a review. Australian Dental Journal. 2010;55(2):128-33. 27. Laine ML, Crielaard W, Loos BG. Genetic susceptibility to periodontitis. Periodontol 2000. 2012 Feb;58(1):37-68. doi: 10.1111/j.1600-0757.2011.00415 28. Loos BG, Papantonopoulos G, Jepsen S, Laine ML. What is the Contribution of Genetics to Periodontal Risk? Dent Clin North Am. 2015;59(4):761-80. 29. Laine M, Jepsen S, Loos BG. Progress in the identification of genetic factors in periodontitis. Curr Oral Health Rep. 2014;1:272-8. 30. Yoshie, H.; Kobayashi, T.; Tai, H.; Galicia, JC. The role of genetic polymorphisms in periodontitis. Periodontol 2000. 2007;43:102-32. 31. Rhodin K, Divaris K, North KE, Barros SP, Moss K, Beck JD, Offenbacher S. Chronic periodontitis genome-wide association studies: gene-centric and gene set enrichment analyses. J Dent Res. 2014;93(9):882-90. 32. Kinane DF, Hart TC. Genes and gene polymorphisms associated whit periodontal disease. Crit Rev Oral Biol Med. 2003;14(6):430-49. 33. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet. 2017;101(1):5- 22. 34. Lappalainen T, MacArthur DG. From variant to function in human disease genetics. Science. 2021;373(6562):1464-8. 35. Divaris K, Monda KL, North KE, Olshan AF, Reynolds LM, et al. Exploring the genetic basis of chronic periodontitis: a genome-wide association study. Hum Mol Genet. 2013;22(11):2312-24. 36. Sanders AE, Sofer T, Wong Q, Kerr KF, Agler C, Shaffer JR, et al. Chronic Periodontitis Genome-wide Association Study in the Hispanic Community Health Study / Study of Latinos. J Dent Res. 2017;96(1):64-72. 37. Shimizu S, Momozawa Y, Takahashi A, Nagasawa T, Ashikawa K, Terada Y, et al. A genome-wide association study of periodontitis in a Japanese population. J Dent Res. 2015;94(4):555–61. 38. NELL1 neural EGFL like 1[Homo sapiens (human)]. NCBI. 2023. 67 39. Li C, Zhang X, Zheng Z, Nguyen A, Ting K, Soo C. Nell-1 Is a key functional modulator in osteochondrogenesis and beyond. J Dent Res. 2019;98(13):1458-63. 40. Deng Z-L, Szafrański SP, Jarek M, Bhuju S, Wagner-Döbler I. Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Sci Rep. 2017;7(1):3703. 41. Bartold PM, Van Dyke TE. Host modulation: controlling inflammation to control infection. Periodontol 2000. 2017;75:317-29. 42. Hajishengallis G. The inflammophilic character of the periodontitis-associated microbiota. Mol Oral Microbiol. 2014;29(6):248-57. 43. Abdulkareem AA, Al-Taweel FB, Al-Sharqi AJB, Gul SS, Sha A, Chapple ILC. Current concepts in the pathogenesis of periodontitis: from symbiosis to dysbiosis. J Oral Microbiol. 2023;15(1):2197779. 44. Murakami S, Mealey BL, Mariotti A, Chapple ILC. Dental plaque-induced gingival conditions. J Periodontol. 2018 Jun;89 Suppl 1:S17-27. doi: 10.1002/JPER.17-0095 45. Steffens JP, Marcantonio RAC. Classificação das Doenças e Condições Periodontais e Peri-implantares 2018: guia Prático e Pontos-Chave. Revista de Odontologia da UNESP [Internet]. 2018 Aug;47(4):189–97. Available from: https://www.scielo.br/pdf/rounesp/v47n4/1807-2577-rounesp-47-4-189.pdf 46. Chapple ILC, Mealey BL, Van Dyke TE, Bartold PM, Dommisch H, Eickholz P, et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: consensus report of workgroup 1 of the 2017 world workshop on the classification of periodontal and peri-implant diseases and conditions. J Clin Periodontol. 2018; Jun;45 Suppl 20:S68-77. doi: 10.1111/jcpe.12940. PMID: 29926499 47. Gomes-Filho IS, Trindade SC, Passos-Soares J de S, Figueiredo ACMG, Vianna MIP, Hintz AM, et al. Clinical diagnosis criteria for periodontal disease: an update. J Dent Health Oral DisordTher. 2018;9(5):354–6. doi:10.15406/jdhodt.2018.09.00408 48. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134-44. 49. Socransky SS, Haffajee AD. Periodontal microbial ecology. Periodontol 2000. 2005;38:135-87. 50. Offenbacher S, Divaris K, Barros SP, Moss KL, Marchesan JT, Morelli T, et al.Genome-wide association study of biologically informed periodontal complex traits offers novel insights into the genetic basis of periodontal disease. Hum Mol Genet. 2016;25(10):2113-129. 51. Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res. 2021 Jan;70(1):29-49. 68 52. Nędzi-Góra M, Kowalski J, Górska R. The immune response in periodontal tissues. Arch Immunol Ther Exp (Warsz). 2017;65(5):421-9. 53. Silva N, Abusleme L, Bravo D, Dutzan N, Garcia-Sesnich J, Vernal R, et al. Mecanismos de resposta do hospedeiro em doenças periodontais. J Appl Oral Sci. 2015;23(3):329-55. 54. Cekici A, Kantarci A, Hasturk H, Van Dyke TE. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000. 2014;64(1):57-80. 55. Kashem MA, Yuan XY, Li L, Kimani J, Plummer F, Luo M. TILRR (Toll-like Interleukin-1 Receptor Regulator), an Important Modulator of Inflammatory Responsive Genes, is Circulating in the Blood. J Inflamm Res. 2021;14:4927-43. 56. Ryder MI. Comparison of neutrophil functions in aggressive and chronic periodontitis. Periodontol 2000. 2010 Jun 53:124-37. 57. Li W, Zhu Y, Singh P, Ajmera DH, Song J, Ji P. Association of Common Variants in MMPs with Periodontitis Risk. Dis Markers. 2016;2016:1545974. 58. Saliem SS, Bede SY, Cooper PR, Abdulkareem AA, Milward MR, Abdullah BH. Pathogenesis of periodontitis - A potential role for epithelial-mesenchymal transition. Jpn Dent Sci Rev. 2022;58:268-78. 59. Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem. 2007 Mar 15;15(6):2223-68. doi: 10.1016/j.bmc.2007.01.011 60. Yucel-Lindberg T, Båge T. Inflammatory mediators in the pathogenesis of periodontitis. Expert Rev Mol Med. 2013;15:e7. 61. Deng J, Lu C, Zhao Q, Chen K, Ma S, Li Z. The Th17/Treg cell balance: crosstalk among the immune system, bone and microbes in periodontitis. J Periodontal Res. 2022;57(2):246-55. 62. Souto GR, Queiroz-Junior CM, de Abreu MH, Costa FO, Mesquita RA. Proinflammatory, Th1, Th2, Th17 cytokines and dendritic cells: a cross-sectional study in chronic periodontitis. PLoS One. 2014;9(3):e91636. 63. O'Brien CA, Nakashima T, Takayanagi H. Osteocyte control of osteoclastogenesis. Bone. 2013;54(2):258-63. 64. Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis. 2022;60:e23490. 65. Okamoto K, Takayanagi H. Osteoimmunology. Cold Spring HarbPerspect Med. 2019; 9(1):a031245. 69 66. Karner CM, Long F. Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life SciCMLS. 2017;74 (9):1649-57. 67. Bokui N, Otani T, Igarashi K, Kaku J, Oda M, Nagaoka T. Involvement of MAPK signaling molecules and Runx2 in the NELL1-induced osteoblastic differentiation. FEBS Lett. 2008; 23;582(2):365-71. 68. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of Bone Resorption in Periodontitis. J Immunol Res. 2015;2015:615486. 69. Gibertoni F, Sommer MEL, Esquisatto MAM, Amaral MECD, Oliveira CA, Andrade TAM,et al.Evolution of Periodontal Disease: Immune Response and RANK/RANKL/OPG System. Braz Dent J. 2017;28(6):679-87. 70. Cheng X, Shi J, Jia Z, Ha P, Soo C, Ting K, et al. NELL-1 in genome-wide association studies across human diseases. Am J Pathol. 2022;192(3):395-405. 71. Eichler EE. Genetic Variation, Comparative Genomics, and the Diagnosis of Disease. N Engl J Med. 2019;381(1):64-74. 72. Courivaud C, Saas P, Ducloux D. Polymorphismes génétiques: comment interpréter les études? [Genetic polymorphisms: how to interpret studies?]. Nephrol Ther. 2012;8(3):141- 5. 73. Brodzikowska, A.; Górski, B. Polymorphisms in Genes Involved in Inflammation and Periodontitis: A Narrative Review. Biomolecules. 2022;12:552. doi: https://doi.org/10.3390/ biom12040552 74. Ting K, Vastardis H, Mulliken JB, Soo C, Tieu A, Do H, et al. Human NELL-1 expressed in unilateral coronal synostosis. J Bone Miner Res. 1999;14(1):80-9. 75. Zhang X, Zara J, Siu RK, Ting K, Soo C. The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res. 2010;89:865- 78. 76. Schaefer AS, Richter GM, Nothnagel M, Manke T, Dommisch H, Jacobs G, et al. A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum Mol Genet. 2009;19(3):553-62. 77. Sanders AE, Sofer T, Wong Q, Kerr KF, Agler C, Shaffer JR, et al. Chronic Periodontitis Genome-wide Association Study in the Hispanic Community Health Study / Study of Latinos. J Dent Res. 2017;96(1):64-72. 78. Lee JH, Song YM, Min SK, Lee HJ, Lee HL, Kim MJ, et al. NELL-1 Increased the osteogenic differentiation and mrna expression of spheroids composed of stem cells. Medicina. 2021;57(6):586. 79. James AW, Pan A, Chiang M, Zara JN, Zhang X, Ting K, et al. A new function of Nell-1 protein in repressing adipogenic differentiation. BiochemBiophys Res Commun. 2011 Jul 22;411(1):126-31. 70 80. Johnson D, Wilkie AO. Craniosynostosis. Eur J Hum Genet. 2011;19:369-76. 81. Qi H, Kim JK, Ha P, Chen X, Chen E, Chen Y, et al. Inactivation of Nell-1 in chondrocytes significantly impedes appendicular skeletogenesis. J Bone Miner Res. 2019;34(3):533-e46. 82. Wang B, Wu Y, Yu H, Jiang L, Fang B, Guo Q. The effects of NELL on corticotomyassisted tooth movement and osteogenesis in a rat model. Biomed Mater Eng. 2018;29(6):757-e71. 83. Siu RK, Zara JN, Hou Y, James AW, Kwak J, Zhang X, et al. NELL-1 promotes cartilage regeneration in an in vivo rabbit model. Tissue Eng Part A. 2012;18(3-4):252-61. 84. Pakvasa M, Alverdy A, Mostafa S, Wang E, Fu L, Li A, et al. Neural EGF-like protein 1 (NELL-1): signaling crosstalk in mesenchymal stem cells and applications in regenerative medicine. Genes Dis. 2017;4(3):127-37. 85. Albers J, Keller J, Baranowsky A, Beil FT, Catala-Lehnen P, Schulze J, et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J Cell Biol. 2013 Feb;200(4):537-49. 86. Liu J, Xiao Q, Xiao J, Niu C, Li Y, Zhang X, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022 Jan;7(1):3. 87. Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. CurrOpin Cell Biol. 2007 Dec;19(6):612-7. 88. Wang L, Li X, Song Y, Zhang L, Ye L, Zhou X, et al. NELL1 Augments Osteogenesis and Inhibits Inflammation of Human Periodontal Ligament Stem Cells Induced by BMP9. J Periodontol. 2022 Jul;93(7):977-87. doi: 10.1002/JPER.20-0517 89. Pang S, Shen J, Liu Y, Chen F, Zheng Z, James AW, et al. Proliferation and osteogenic differentiation of mesenchymal stem cells induced by a short isoform of NELL-1. Stem Cells. 2015 Mar;33(3):904-15. doi: 10.1002/stem 90. Felber K, Elks PM, Lecca M, Roehl HH. Expression of osterix is regulated by FGF and Wnt/β-catenin signalling during osteoblast differentiation. PLoS One. 2015;10(12):e1440982. 91. Li C, Zheng Z, Zhang X, Asatrian G, Chen E, Song R, et al. Nfatc1 Is a Functional Transcriptional Factor Mediating Nell-1-Induced Runx3 Upregulation in Chondrocytes. Int J Mol Sci. 2018;19(1):168. doi: 10.3390/ijms19010168 92. Shen J, James AW, Zhang X, Pang S, Zara JN, Asatrian G, et al. Novel Wnt regulator NEL-like molecule antagonizes adipogenesis and augments osteogenesis induced by bone morphogenetic protein 2. Am J Pathol. 2016;186:419-34. doi: 10.1016/j.ajpath.2015.10.011 71 93. Zhang X, Péault B, Chen W, Li W, Corselli M, James AW, et al. The Nell-1 growth factor stimulates bone formation by purified human perivascular cells. Tissue Eng Part A. 2011;(19-20):2497-509. doi: 10.1089/ten.TEA.2010.0705 94. Hu K, Olsen BR. Vascular endothelial growth factor control mechanisms in skeletal growth and repair. Dev Dyn. 2017 Apr;246(4):227-34. doi: 10.1002/dvdy.24463 95. Lee M, Siu RK, Ting K, Wu BM. Effect of Nell-1 delivery on chondrocyte proliferation and cartilaginous extracellular matrix deposition. Tissue Eng Part A. 2010;16(5):1791-800. 96. Shen J, James AW, Zara JN, Asatrian G, Khadarian K, Zhang JB, et al. BMP2- induced inflammation can be suppressed by the osteoinductive growth factor NELL-1. Tissue Eng Part A. 2013;19(21-22):2390-401. 97. James AW, Shen J, Zhang X, Asatrian G, Goyal R, Kwak JH, et al. NELL-1 in the treatment of osteoporotic bone loss. Nat Commun. 2015;6(7362):e75. doi: https://doi.org/ 10.1038/ncomms8362 98. Karasik D, Hsu YH, Zhou Y, Cupples LA, Kiel DP, Demissie S. Genome-wide pleiotropy of osteoporosis-related phenotypes: the Framingham study. J Bone Miner Res. 2010;25:1555-e63. 99. Dempster DW. Osteoporosis and the burden of osteoporosis- related fractures. Am J Manag Care. 2011;17 Suppl 6:S164-69. 100. Li C, Zheng Z, Ha P, Jiang W, Berthiaume EA, Lee S, et al. Neural EGFL like 1 as a potential pro-chondrogenic, anti-inflammatory dual functional disease modifying osteoarthritis drug. Biomaterials. 2020;226:119541. 101. Lee HS, Lee J, Kim SO, Song JS, Lee JH, Lee SI, et al. Comparative gene-expression analysis of the dental follicle and periodontal ligament in humans. PLoS One. 2013 Dec;28(12):e84201. 102. Kwon T, Lamster IB, Levin L. Current Concepts in the Management of Periodontitis. Int Dent J. 2021;71(6):462-476. doi: 10.1111/idj.12630 103. Sholapurkar A, Sharma D, Glass B, Miller C, Nimmo A, Jennings E. Professionally Delivered Local Antimicrobials in the Treatment of Patients with Periodontitis-A Narrative Review. Dent J (Basel). 2020;9(1):2. 104. Berezow AB, Darveau RP. Microbial shift and periodontitis. Periodontol 2000. 2011 Feb;55(1):36-47. 105. Salvi GE, Stähli A, Schmidt JC, Ramseier CA, Sculean A, Walter C. Adjunctive laser or antimicrobial photodynamic therapy to non-surgical mechanical instrumentation in patients with untreated periodontitis: A systematic review and meta-analysis. J Clin Periodontol. 2020;47 Suppl 22:S176-98. 72 106. AlZoubi IA. An Overview of the Systematic Evidence on the Adjunctive Use of Laser Therapy in Non-surgical Periodontal Treatment. Cureus. 2023;15(8):e44268. doi: 10.7759/cureus.44268 107. Invernici MM, Salvador SL, Silva PHF, Soares MSM, Casarin R, Palioto DB, et al. Effects of Bifidobacterium probiotic on the treatment of chronic periodontitis: A randomized clinical trial. J Clin Periodontol. 2018 Oct;45(10):1198-1210. 108. Seth TA, Kale TA, Lendhey SS, Bhalerao PV. Comparative evaluation of subgingival irrigation with propolis extract versus chlorhexidine as an adjunct to scaling and root planing for the treatment of chronic periodontitis: A randomized controlled trial. J Indian Soc Periodontol. 2022;26(2):151-6. 109. Zhao H, Hu J, Zhao L. Adjunctive subgingival application of Chlorhexidine gel in nonsurgical periodontal treatment for chronic periodontitis: a systematic review and metaanalysis. BMC Oral Health. 2020;20(1):34. 110. Iwashita M, Hayashi M, Nishimura Y, Yamashita A. The Link Between Periodontal Inflammation and Obesity. Curr Oral Health Rep. 2021;8(4):76-83. 111. Borojevic T. Smoking and Periodontal Disease. MaterSociomed. 2012;24(4):274. doi: 10.5455/msm.2012.24.274-276 112. Kim H-N, Jang Y-E, Kim C-B, Kim N-H. Socioeconomic status and self-reported periodontal symptoms in community-dwelling individuals: data from the Korea Community Health Surveys of 2011 and 2013. Int Dent J. 2018;68(6):411–9. 113. Gonçalves PF, Harris TH, Elmariah T, Aukhil I, Wallace MR, Shaddox LM. Genetic polymorphisms and periodontal disease in populations of African descent: A review. J Periodontal Res. Blackwell Munksgaard; 2018;53:164-73. doi: 10.1111/jre.12505 114. Wadia R. Stress and periodontitis. Br Dent J. 2020 Nov 27;229(10):669-669. doi: 10.1038/s41415-020-2450-5 115. Wu Y, Dong G, Xiao W, Xiao E, Miao F, Syverson A, et al. Effect of Aging on Periodontal Inflammation, Microbial Colonization, and Disease Susceptibility. J Dent Res. 2016 Apr;95(4):460-6. doi: 10.1177/0022034515625962 116 Freitag-Wolf S, Dommisch H, Graetz C, Jockel-Schneider Y, Harks I, Staufenbiel I, et al. Genome-wide exploration identifies sex-specific genetic effects of alleles upstream NPY to increase the risk of severe periodontitis in men. J Clin Periodontol. 2014;41(12):1115-21. doi: 10.1111/jcpe.12317 117. Li Y, Du Z, Xie X, Zhang Y, Liu H, Zhou Z, et al. Epigenetic changes caused by diabetes and their potential role in the development of periodontitis. J Diabetes Investig. 2021;12(8):1326-35. 73 118. Shen T-C, Chang P-Y, Lin C-L, Wei C-C, Tu C-Y, Hsia T-C, et al. Risk of Periodontal Disease in Patients With Asthma: A Nationwide Population-Based Retrospective Cohort Study. J Periodontol. 2017;88(8):723-30. 119. Moraschini V, Calasans-Maia JA, Calasans-Maia MD. Association between asthma and periodontal disease: A systematic review and meta-analysis. J Periodontol. 2018;89(4):440-55. 120. Arboleda S, Vargas M, Losada S, Pinto A. Review of obesity and periodontitis: an epidemiological view. Br Dent J.2019;227(3):235–9. 121. Gomes-Filho IS, Soledade-Marques KR, Seixas da Cruz S, de Santana Passos-Soares J, Trindade SC, Souza-Machado A, et al. Does periodontal infection have an effect on severe asthma in adults? J Periodontol. 2014;85(6):e179-87. 122. Soledade-Marques KR, Gomes-Filho IS, da Cruz SS, Passos-Soares J de S, Trindade SC, Cerqueira E de MM, et al. Association between periodontitis and severe asthma in adults: A case–control study. Oral Dis. 2018;24(3):442–8.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Jaiza_DISSERTACAO_PIOS_04.03.24_VERSÃO_FINAL.pdfDissertação Jaiza Kênsuly4,74 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.