Please use this identifier to cite or link to this item: https://repositorio.ufba.br/handle/ri/37304
Full metadata record
DC FieldValueLanguage
dc.creatorDantas, Camila Paim-
dc.date.accessioned2023-07-06T12:27:35Z-
dc.date.available2023-07-06T12:27:35Z-
dc.date.issued2022-06-21-
dc.identifier.citationDANTAS, Camila Paim. Prospecção de enzimas a partir de consórcio microbiano degradador de petróleo. 2022. 264 f. Tese (Doutorado em Geoquímica do Petróleo e Ambiental) Instituto de Geociências, Universidade Federal da Bahia, Salvador, BA, 2022.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/37304-
dc.description.abstractProteomics is considered an emerging biotechnological tool that helps to clarify the mechanisms involved in the biotransformation/biodegradation of hydrocarbons. Therefore, this work aimed to determine the differential enzymatic patterns of the microbial consortium degrading oil from the Recôncavo Baiano basin, in addition, this work is relevant for future systems in recovery of oil-impacted environments. The mixed microbial consortium was composed of 10 bacteria and 23 fungi of marine origin, which were identified by the Sanger method using the 16S and ITS genes. The consortium was subjected to constant agitation at 180 rpm at 35 °C for 7 days to assess crude oil depletion and identify enzymatic patterns in the presence of oil. The concentration of hydrocarbons was detected by gas chromatography coupled to a flame ionization detector according to the protocol adapted from USEPA 3510 and the degradation was evaluated by the ratios Pr/Ph, Pr/C17, Ph/C18, HTP/UCM and others. The peptides were sequenced using MS-MS liquid chromatography and the enzymes were identified using the PatternLab for Proteomics software. From the preliminary results, a reduction in resolved hydrocarbons and unresolved complex mixture hydrocarbons, as well as isoprenoids, pristane and phytane, was observed and could be verified. The proteomic analysis revealed the predominance of enzymes related to the stress response, transport and translation/transcription when in the presence of oil and indicated the presence of enzymes associated with the degradation of xenobiotics, indicating their possible use in biotechnological applications. Thus, constructing a library of proteins related to crude oil clarifies the degradation potential of the microbial consortium and lays the foundations for the optimizing of a more robust system of environmental recovery.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado da Bahia (FAPESB)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectBiocatálisept_BR
dc.subjectBiorremediaçãopt_BR
dc.subjectBiodegradaçãopt_BR
dc.subjectProteômicapt_BR
dc.subjectHidrocarbonetos Totais do Petróleo (HTP)pt_BR
dc.subjectHidrocarbonetos Policíclicos Aromáticos (HPA)pt_BR
dc.subject.otherBiocatalysispt_BR
dc.subject.otherBioremediationpt_BR
dc.subject.otherBiodegradationpt_BR
dc.subject.otherProteomicspt_BR
dc.subject.otherTotal Petroleum Hydrocarbons (HTP)pt_BR
dc.subject.otherPolycyclic Aromatic Hydrocarbons (PAH)pt_BR
dc.titleProspecção de enzimas a partir de consórcio microbiano degradador de petróleopt_BR
dc.title.alternativeProspection of enzymes from a microbial consortium that degrades petroleumpt_BR
dc.typeTesept_BR
dc.publisher.programPrograma de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOLOGIA::GEOQUIMICApt_BR
dc.contributor.advisor1Oliveira, Olívia Maria Cordeiro de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6803571168057331pt_BR
dc.contributor.advisor2Lima, Danusia Ferreira-
dc.contributor.advisor2ID0000-0002-8412-9148pt_BR
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/3488835911770590pt_BR
dc.contributor.referee1Lima, Danusia Ferreira-
dc.contributor.referee1ID0000-0002-8412-9148pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/348883591177059pt_BR
dc.contributor.referee2Queiroz, Antônio Fernando de Souza-
dc.contributor.referee2ID0000-0002-3473-4462pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8307874123800948pt_BR
dc.contributor.referee3Chinalia, Fabio Alexandre-
dc.contributor.referee3ID0000-0001-9775-6442pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2940372015929687pt_BR
dc.contributor.referee4Santos, Lucilene Delazari dos-
dc.contributor.referee4ID0000-0001-5832-1825pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/3368404126695911pt_BR
dc.contributor.referee5Rossini, Bruno César-
dc.contributor.referee5ID0000-0002-5685-9610pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/1696102117856353pt_BR
dc.creator.ID0000-0002-1462-2594pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2527841206003732pt_BR
dc.description.resumoA proteômica é considerada uma ferramenta biotecnológica em ascensão que auxilia na compreensão dos mecanismos envolvidos na biotransformação/biodegradação de hidrocarbonetos. Assim sendo, este trabalho teve o intuito de prospectar os padrões enzimáticos diferenciais do consórcio microbiano degradador do petróleo da bacia do Recôncavo Baiano na presença do contaminante, para futuras aplicações em sistemas de recuperação de ambientes impactados por petróleo. O consórcio microbiano misto é composto por 10 bactérias e 23 fungos de origem marinha, os quais foram identificados pelo método Sanger utilizando os genes 16S e ITS. O consórcio foi submetido a agitação constante de 180 rpm a 35 °C durante 7 dias para avaliação da deplecção de óleo cru e a identificação dos padrões enzimáticos na presença do petróleo. A concentração dos hidrocarbonetos foi detectada por cromatografia gasosa acoplada a detector de ionização em chama conforme protocolo adaptado da USEPA 3510 e a degradação avaliada pelas razões Pr/Ph, Pr/C17, Ph/C18, HTP/UCM e outras. O sequenciamento dos peptídeos ocorreu em cromatografia líquida MS-MS e as enzimas identificadas através do software PatternLab for Proteomics. A partir dos resultados preliminares foi possível verificar que houve redução dos hidrocarbonetos resolvidos e hidrocarbonetos de mistura complexa não resolvida, bem como os isoprenóides, pristano e fitano. A análise proteômica revelou a predominância de enzimas relacionadas à resposta ao estresse, transporte e tradução/transcrição quando em presença de petróleo e também indicou a existência de enzimas associadas à degradação de xenobióticos, indicando seu possível uso em aplicações biotecnológicas. Isto posto, a construção de uma biblioteca de proteínas relacionadas ao óleo bruto permite a compreensão do potencial de degradação do consórcio microbiano, bem como estabelece as bases para a otimização de um sistema mais robusto de recuperação ambiental.pt_BR
dc.publisher.departmentInstituto de Geociênciaspt_BR
dc.relation.referencesABATENH, E.; GIZAW, B.; TSEGAYE, Z.; WASSIE, M. The role of microorganisms in bioremediation-A review. Journal of Environmental Biology, v. 2, n.1, p. 038-046, 2017. ISSN: 2690-0777 ABDALLAH, M.F.; AMEYE, M.; DE SAEGER, S.; AUDENAERT, K.; HAESAERT, G. Biological control of mycotoxigenic fungi and their toxins: An update for the pre-harvest approach. In: JOBEHN, P.B.; STEPMAN, F. Mycotoxins-Impact and Management Strategies. Intech Open, 2018. DOI: 10.5772/intechopen.76342 ABDELHALEEM, H. A.; ZEIN, H. S.; AZEIZ, A.; SHARAF, A. N.; ABDELHADI, A. A. Identification and characterization of novel bacterial polyaromatic hydrocarbon-degrading enzymes as potential tools for cleaning up hydrocarbon pollutants from different environmental sources. Environmental Toxicology and Pharmacology, v. 67, p. 108-116, 2019. DOI:10.1016/j.etap.2019.02.009 ABDEL-SHAFY, H. I.; MANSOUR, M. S. M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, v. 25, n. 1, p. 107-123, 2016. DOI: 10.1016/j.ejpe.2015.03.011 ABDULLAH, O.A.; FATHI, R.A.; FADHEL, M.N. Use of fungi in bioremediation of contaminated sites with hydrocarbons. Plant Archives, v. 20, n.2, p. 1406-1410, 2020. ISSN:0972-5210 ABDULSALAM, S.; OMALE, A.B. Comparison of biostimulation and bioaugmentation techniques for the remediation of used motor oil contaminated soil. Brazilian Archives of Biology and Technology, v. 52, n. 3, p. 747-754, 2009. DOI: 10.1590/S1516- 89132009000300027 ABHA SINGH, KUMAR, V; SRIVASTAVA, J.N. Assessment of Bioremediation of Oil and Phenol Contents in Refi nery Waste Water via Bacterial Consortium. Journal of Petroleum & Environmental Biotechnology, v. 4, p. 1-4, 2013. DOI: 10.4172/2157-7463.1000145 ABTAHI, H.; PARHAMFAR, M.; SAEEDI, R.; VILLASENOR, J.; SARTAJ, M.; KUMAR, V.; KOOLIVAND, A. Effect of competition between petroleum-degrading bacteria and indigenous compost microorganisms on the efficiency of petroleum sludge bioremediation: Field application of mineral-based culture in the composting process. Journal of Environmental Management, v. 258, p. 110013, 2020. DOI:10.1016/j.jenvman.2019.110013 ADRIO, J.L.; DEMAIN, A.L. Microbial enzymes: tools for biotechnological processes. Biomolecules, v. 4, n. 1, p. 117-139, 2014. DOI: 10.3390/biom4010117 AFTAB, M.; TAHIR, A.; ASIM, T.; MARYAM, I. Optimization of cultural conditions for enhanced production of laccase by Aspergillus flavus Maf 0139. Biologia (Pakistan), v. 64, n. 2, p. 247-255, 2018. ISSN 2313 – 206X 179 AGGARWAL, SURUCHI; YADAV, AMIT KUMAR. False discovery rate estimation in proteomics. In: Aggarwal, S.; Yadav, A. K. Statistical Analysis in Proteomics. Humana Press, New York, NY, 2016. p. 119-128. DOI: 10.1007/978-1-4939-3106-4_7 AGRAWAL, N.; VERMA, P.; SINGH, R.S.; SHAHI, S.K. Ligninolytic enzyme production by white rot fungi Podoscypha elegans strain FTG4. International Journal of Current Microbiology and Applied Sciences, v. 6, n. 5, p. 2757-2764, 2017. DOI: 10.20546/ijcmas.2017.605.309 AHMED, A. B.; NAJWA, M.J.A.; ABU-MEJDAD, WIJDAN H.; AL-TAMIMI. Mycodegradation of Crude Oil by Fungal Species Isolated from Petroleum Contaminated Soil. International Journal of Innovative Research in Science, Engineering and Technology, v. 5, p. 1517-1524, 2016. DOI:10.15680/IJIRSET.2016.0502068 AI-JAWHARI, I.F.H. Ability of Some Soil Fungi in Biodegradation of Petroleum Hydrocarbon. Journal of Applied & Environmental Microbiology, v. 2, p. 46-52, 2014. DOI: 10.12691/ jaem - 2-2-3 ALAEY, M.; NADERI, R.; VEZVAEI, A.; KHALIGHI, A. Comparing study between four different methods of genomic DNA extraction from Cyclamen persicum Mill. International Journal of Agriculture And Biology, v. 7, p. 882-884, 2005. DOI:1560–8530/2005/07–6–882– 884 AL-DAHHAN, W.H.; MAHMOOD, S.M.A. Classification of Crude Oils and its Fractions on the Basis of Paraffinic, Naphthenic and Aromatics. Al-Nahrain Journal of Science, v. 22, n. 3, p. 35-42, 2019. DOI: 10.22401/ANJS.22.3.05 ALEGBELEYE, O.O.; OPEOLU, B.O.; JACKSON, V.A. Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environmental management, v. 60, n. 4, p. 758-783, 2017. DOI: 10.1007/s00267-017-0896-2 ALEXANDRE-JUNIOR, W.R.; SILVA, W.S.; RAMOS, V.O. Acceleration of biochemical processes through a lyophilized enzymatic complex. Brasil Patente BR 10 2016 006137 7. 2016. AL-HAWASH, A.B.; ZHANG, J.; LI, S.; LIU, J.; GHALIB, H.B.; ZHANG, X.M.A.F. Biodegradation of n-hexadecane by Aspergillus sp. RFC-1 and its mechanism. Ecotoxicol Environ Saf, v. 164, p. 398–408, 2018. DOI: 10.1016/j.ecoenv.2018.08.049 ALLRED, DEGRAY, EDWARDS, HEDRICK, KLEMME, ROGERS, WULF; HODGE. Proposed procedures for microbiological examination of fuels. SIM Special Publications, No. 1. Merck, Sharp & Dohme Research Laboratories, Rahway, N.J, 1963. ALTSCUL, S.F.; GISH, W.; MYERS, E.W.; AND LIPMAN, D.J. Basic local alignment search tool. Journal of Molecular Biology, v. 215, p. 403-410, 1990. DOI: 10.1016/S0022- 2836(05)80360-2 180 AMIT, K.; NAKACHEW, M.; YILKAL, B.; MUKESH, Y. A review of factors affecting enzymatic hydrolysis of pretreated lignocellulosic Biomass. Research Journal of Chemistry and Environment, v. 22, p. 62–67, 2018. AMORIM FRANCO, T. M.; BLANCHARD, J. S. Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drugability. Biochemistry, v. 56, n. 44, p. 5849-5865, 2017. DOI:10.1021/acs.biochem.7b00849. ANDRADE, J.A.; AUGUSTO, F.; JARDIM, I.C.; SALES, F. Biorremediação de solos contaminados por petróleo e seus derivados. Eclética Química Journal, v. 35, n. 3, p. 17-43, 2010. DOI: 10.1590/S0100-46702010000300002 ANJUM, K.; SADIQ, I.; CHEN, L.; KALEEM, S.; LI, X.C.; ZHANG, Z.; LIAN, X.Y. Novel antifungal janthinopolyenemycins A and B from a co-culture of marine-associated Janthinobacterium spp. ZZ145 and ZZ148. Tetrahedron Lett, v. 59, n. 38, p. 3490-3494, 2018. DOI: 10.1016/j.tetlet.2018.08.022 ANVISA - Agência Nacional de Vigilância Sanitária. Disponível em:<http://portal.anvisa.gov.br/>. Acessado em: Maio 2020. ANWAR PHULPOTO, A.H.; QAZI, M.A; MANGI, S.; AHMED, S.; IHSAN-UL-HAQ; PHUL, A.R.; KANHAR, N.A. Bioremediation of Oil-Based Paint from Aqueous Media by Novel Indigenous Brevibacillus parabrevis Strain NAP3 and its Toxicity Assessment. Pol. J. Environ. Stud, v. 26, n.1, p. 229-237, 2017. DOI: 10.15244/pjoes/62905 ARAÚJO, B. Políticas de apoio à inovação no Brasil: uma análise de sua evolução recente. Rio de Janeiro: Ipea, 1.759, 2012. Available at: <http://hdl.handle.net/10419/91150> ARAÚJO, S.C. DA S.; SILVA-PORTELA, R.C.B.; DE LIMA, D.C.; DA FONSÊCA, M.M.B.; ARAÚJO, W.J.; DA SILVA, U.B.; NAPP, A.P.; PEREIRA, E.; VAINSTEIN, M.H.; AGNEZLIMA, L.F. MBSP1: a biosurfactant protein derived from a metagenomic library with activity in oil degradation. Sci Rep, v. 10, 2020. DOI:10.1038/s41598-020-58330-x ARCHAMBAULT, E.; CAMPBELL, D.; GINGRAS, Y.; LARIVIÈRE, V. Comparing bibliometric statistics obtained from the Web of Science and Scopus. J Assoc Inf Sci Technol, v. 60, n. 7, p. 1320–1326, 2009. DOI: 10.1002/asi.21062 ARIA, M.; CUCCURULLO, C. bibliometrix: An R-tool for comprehensive science mapping analysis. Journal ofInformetrics, v. 11, n. 4, p 959-975, 2017. DOI: 10.1016/j.joi.2017.08.007 ARORA, D. S.; GILL, P. K. Comparison of two assay procedures for lignin peroxidase. Enzyme and Microbial Technology, v. 28, p. 602–605, 2001. DOI: 10.1016/s0141-0229(01)00302-7 ARPITA GHOSH; PAPITA DAS SAHA, Optimization of copper bioremediation by Stenotrophomonas maltophilia PD2. Journal of Environmental Chemical Engineering, v. 1, n 3, p. 159-163, 2013. DOI: 10.1016/j.jece.2013.04.012 181 ASEMOLOYE, M.D.; AHMAD, R.; JONATHAN, S.G. Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains. Environ Pollut, v. 235, p. 55-64, 2018. DOI: 10.1016/j.envpol.2017.12.042 ASEMOLOYE, M.D.; TOSI, S.; DACCÒ, C.; WANG, X.; XU, S.; MARCHISIO, M.A.; GAO, W.; JONATHAN, S.G.; PECORARO L. Hydrocarbon Degradation and Enzyme Activities of Aspergillus oryzae and Mucor irregularis Isolated from Nigerian Crude Oil-Polluted Sites. Microorganisms, v. 8, n. 12, p. 1912, 2020. DOI: 10.3390/microrganisms8121912 ASSES, N.; AYED, L.; HKIRI, N.; HAMDI, M. Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway. Biomed Res Int, v. 2028, 2018. DOI: 10.1155/2018/3049686 ASTHANA, A.; SHEARER, C.A. Antagonistic activity of Pseudohalonectria and Ophioceras. Mycol, v. 82, n. 5, p. 554-561, 1990. DOI: 10.2307/3760044 ATAGANA, H.I.; HAYNES, R.J.; WALLIS, F.M. Fungal bioremediation of creosotecontaminated soil: A laboratory scale bioremediation study using indigenous soil fungi. Water Air Soil Pollut, v. 172, n. 1, p. 201-219, 2006. DOI: 10.1007/s11270-005-9074-x AYDIN, S.; KARAÇAY, H.A.; SHAHI, A.; GÖKÇE, S.; INCE, B.; INCE, O. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev, v. 31, n. 2, p. 61-72, 2017. DOI: 10.1016/j.fbr.2016.12.001 AZIZ, A.; AGAMUTHU, P.; ALARIBE, F.O.; FAUZIAH, S.H. Biodegradation of benzo[a]pyrene by bacterial consortium isolated from mangrove sediment. Environ Technol (United Kingdom), v. 39, p. 527–535, 2018. DOI: 10.1080/09593330.2017.1305455 AZUBUIKE, C.C.; CHIKERE, C.B.; OKPOKWASILI, G.C. Biorremediação: uma tecnologia sustentável ecologicamente correta para a gestão ambiental. In: Saxena, G., Bharagava, R. (eds) Biorremediação de Resíduos Industriais para Segurança Ambiental.Springer:Singapura.2020. DOI: 10.1007/978-981-13-1891-7_2 BADALYAN, S.M.; INNOCENTI, G.; GARIBYAN, N.G. Antagonistic activity of xylotrophic mushrooms against pathogenic fungi of cereals in dual culture. Phytopathol Mediterr, v. 41, n. 3, p. 220-225, 2002. Available in< http://digital.casalini.it/10.1400/14513 > BAGGI, G.; BARBIERI, P.; GALLI, E.; TOLLARI, S. Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Applied Environmental Microbiology, v. 53, n. 9, p. 2129–2132, 1987. DOI: 10.1128/aem.53.9.2129-2132.1987 BAKER, S.E. Aspergillus niger genomics: past, present and into the future. Med Mycol, v. 44, p. S17-S2, 2006. DOI: 10.1080/13693780600921037 BANKOLE, P.O; SEMPLE K.T.; JEON, B.H.; GOVINDWAR, S.P. Impact of redox-mediators in the degradation of olsalazine by marine-derived fungus, Aspergillus aculeatus strain bpo2: 182 Response surface methodology, laccase stability and kinetics. Ecotoxicol Environ Saf, v. 208, p.111742, 2021. DOI: 10.1016/j.ecoenv.2020.111742 BARAKAT, A. O.; QIANB, Y.; KIMB, M.; KENNICUTT, M. C. Chemical characterization of naturally weathered oil residues in arid terrestrial environment in Al–Alamein, Egypt. Environment International, v. 27, n. 4, p. 291–310, 2001. DOI: 10.1016/s0160-4120(01)00060- 5 BARBOSA, L.N.; FERREIRA-JR, R.S.; MELLO, L.P.; GARCIA, G.H.; CHECHI, L.J.; FRACHIN, T.; DE BARROS, L.C.; DE MORAES, G.B.S.; BAGAGLI, E.; FERNANDES-JR, A.; BARRAVIERA, B.; DELAZARI, S.L. Molecular identification and phylogenetic analysis of Bothrops insularis bacterial and fungal microbiota. J Toxicol Environ Health, Part A 8, p. 142- 153, 2018. DOI: 10.1080/15287394.2017.1395581 BARGIELA, R.; HERBST, F. A.; MARTÍNEZ‐ MARTÍNEZ, M.; SEIFERT, J.; ROJO, D.; CAPPELLO, S.; BARBAS, C. Metaproteomics and metabolomics analyses of chronically petroleum‐ polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics, v. 15, n. 20, p. 3508-3520, 2015. DOI: 10.1002/pmic.201400614 BASU, A.; APTE, S.K.; PHALE, P.S. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Applied and environmental microbiology, v. 72, n. 3, p. 2226-2230, 2006. DOI: 10.1128/AEM.72.3.2226-2230.2006 BCC Research - Business Communications Company (2020a). In Report Overview ENV006D. Global Markets for Environmental Remediation Technologies. Disponível em:< http://www.bccresearch.com>Acessado em: julho 2021. BCC Research - Business Communications Company (2021b) In Report Overview BIO030L. Global Markets for Enzymes in Industrial Applications. Disponível em:< http://www.bccresearch.com>Acessado em: julho 2021. BECARELLI, S.; CHICCA, I.; SIRACUSA, G.; LA CHINA, S.; GENTINI, A.; LORENZI, R.; MUNZ, G.; PETRONI, G.; LEVIN, D. B.; DI GREGORIO, S. Hydrocarbonoclastic Ascomycetes to enhance co-composting of total petroleum hydrocarbon (TPH) contaminated dredged sediments and lignocellulosic matrices. New Biotechnol, n. 50, p. 27-36, 2019. DOI: 10.1016/j.nbt.2019.01.006 BEHBUDI, G.; YOUSEFI, K.; SADEGHIPOUR, Y. Microbial Enzymes Based Technologies for Bioremediation of Pollutions. J environ treat tech, v. 9, n. 2, p. 463-469, 2021. DOI: 10.47277/JETT/9(2)469 BEHNOOD, M.; NASERNEJAD, B.; NIKAZAR, M. Biodegradation of crude oil from saline waste water using white rot fungus Phanerochaete chrysosporium. Journal of Industrial and Engineering Chemistry, v. 20, n. 4, p. 1879-1885, 2014. DOI:10.1016/j.jiec.2013.09.007 BENOIT-GELBER, I.; GRUNTJES, T.; VINCK, A.; VAN VELUW, J.G.; WÖSTEN, H.A.; BOEREN, S.; VERVOORT, J.J.M.; DE VRIES, R.P. Mixed colonies of Aspergillus niger and 183 Aspergillus oryzae cooperatively degrading wheat bran. Fungal Genet Biol, v.102, p. 31-37, 2017. DOI: 10.1016/j.fgb.2017.02.006 BIKTASHEVA, L.; GORDEEV, A.; SELIVANOVSKAYA, S.; GALITSKAYA, P. Di-and Monorhamnolipids Produced by the Pseudomonas putida PP021 Isolate Significantly Enhance the Degree of Recovery of Heavy Oil from the Romashkino Oil Field (Tatarstan, Russia). Processes, v. 10, n. 4, p. 779, 2022. DOI:10.3390/pr10040779 BILAL, M.; IQBAL, H.M.N. Ligninolytic Enzymes Mediated Ligninolysis: An Untapped Biocatalytic Potential to Deconstruct Lignocellulosic Molecules in a Sustainable Manner. Catal Lett, v. 150, n. 2, p, 524-543, 2020. DOI: 10.1007/s10562-019-03096-9 BLANEY, L. Magnetite (Fe3O4): Properties, Synthesis, and Applications. Lehigh Review, v. 15, n. 5, p. 33-81, 2007. BLOOMERG. Bloomberg Innovation Index: Latest Global Rankings. Bloomberg Innovation Index: Latest Global Rankings. Disponível em:<https://www.bloomberg.com › > Acesso em: julho 2020. BLYTH, W.; SHAHSAVARI, E.; MORRISON, P. D.; BALL, A. S. Biosurfactant from red ash trees enhances the bioremediation of PAH contaminated soil at a former gasworks site. Journal of environmental management, v. 162, p. 30-36, 2015. DOI: 10.1016/j.jenvman.2015.07.041 BOLL, MATTHIAS; ESTELMANN, SEBASTIAN; HEIDER, JOHANN. Catabolic pathways and enzymes involved in the anaerobic degradation of monocyclic aromatic compounds In: BOLL (Ed). Anaerobic utilization of hydrocarbons, oils, and lipids, Springer, p. 85-133, 2020. DOI:10.1007/978-3-319-50391-2 BONALUMI, J.K.R. Estudos cristalográficos da enzima clorocatecol 1,2-dioxigenase de Pseudomonas putida. 2010. 122f. Mestrado. Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo, Ribeirão Preto, 2010. BONUGLI-SANTOS, R.C.; DOS SANTOS; VASCONCELOS, M.R.; PASSARINI, M.R.; VIEIRA, G.A.; LOPES, V.C.; MAINARDI, P.H.; SETTE, L.D. Marine-derived fungi: diversity of enzymes and biotechnological applications. Front Microbiol, v. 6, n. 269, 2015. DOI: 10.3389/fmicb.2015.00269 BOONCHAN, S.; BRITZ, M.L.; STANLEY, G.A. Degradation and mineralization of highmolecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Applied and environmental microbiology, v. 66, n. 3, p. 1007-1019, 2000. DOI: 10.1128/AEM.66.3.1007-1019.2000 BOSSO, L.; SCELZA, R.; TESTA, A.; CRISTINZIO, G.; RAO, M.A. Depletion of pentachlorophenol contamination in an agricultural soil treated with byssochlamys nivea, scopulariopsis brumptii and urban waste compost: a laboratory microcosm study. Water Air Soil Pollut, v. 226, n. 183, p. 1-9, 2015. DOI: 10.1007/s11270-015-2436-0 184 BOURGUIGNON, N.; IRAZUSTA, V.; ISAAC, P.; ESTÉVEZ, C.; MAIZEL, D.; FERRERO, M. A. Identification of proteins induced by polycyclic aromatic hydrocarbon and proposal of the phenanthrene catabolic pathway in Amycolatopsis tucumanensis DSM 45259. Ecotoxicology and Environmental Safety, v. 175, p. 19-28, 2019. DOI: 10.1016/j.ecoenv.2019.02.071 BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, v. 72, n. 1-2, p. 248-254, 1976. DOI: 10.1006/abio.1976.9999 BREDA, G. C.; DOBLER, L.; GODOY, K. D.; FREIRE, D. M. G.; MOURA, M. V. H.; ALMEIDA, R. V. In: ITABAINA-JUNIOR, I.; SOUZA, R. O. M. A. Biocatálise e biotransformação: fundamentos e aplicações. 4º serie. Rio Grande do Sul: Simplissimo Livros Ltda. 2017. Cap. 1, p 7-50. BREZNA, B.; KHAN, A.A.; CERNIGLIA, C. E. Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS microbiology letters, v. 223, n. 2, p. 177-183, 2003. DOI: 10.1016/S0378-1097(03)00328-8 BRUNELLE, J. L.; GREEN, R. One-dimensional SDS-Polyacrylamide Gel Electrophoresis (1D SDS-PAGE). Laboratory Methods in Enzymology: Protein Part C, Cap 12, v. 541, p. 151–159, 2014.DOI: 10.1016/B978-0-12-420119-4.00012-4 BRZESZCZ, J.; KASZYCKI, P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation, n. 29, p. 359–407, 2018. DOI: 10.1007/s10532-018-9837-x BUSHNELL, L. D.; HAAS, H. F. The utilization of certain hydrocarbons by microorganisms. Journal of Bacteriology, v. 41, n. 5, p. 653-673, 1941. DOI: 10.1128/jb.41.5.653-673.1941 BUTTOW, M.E.; STEINDEL, M. Patent application in biotechnology at subclass C12N in Brazil at the period of 2001 to 2005. Braz Arch Biol Technol, v. 55, n.3, p. 341-348, 2012. DOI: 10.1590/S1516-89132012000300003 CALDERÓN-DELGADO, I.C.; MORA-SOLARTE, D.A.; VELASCO-SANTAMARÍA, Y.M. Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation. Environmental monitoring and assessment, v. 191, n. 6, p. 1-13, 2019. DOI: 10.1007/s10661-019-7519-8 CANO, M.A. Interacción de microorganismos benéficos en plantas: micorrizas, Trichoderma spp. Y Pseudomonas spp. una revisión. Rev UDCA Act & Div Cient, v. 14, n. 2, p.15-31, 2011 ISSN 0123-4226 CAO, H.; WANG, C.; LIU, H.; JIA, W.; SUN, H. Enzyme activities during Benzo [a] pyrene degradation by the fungus Lasiodiplodia theobromae isolated from a polluted soil. Scientific reports, v. 10, n. 1, p. 1-11, 2020. DOI: 10.1038/s41598-020-57692-6 CAPELETTO, M. G.; OMORI, A. T. Promiscuidade enzimática: fundamentos e aplicações. In: ITABAINA-JUNIOR, I.; SOUZA, R. O. M. A. Biocatálise e biotransformação: fundamentos e 185 aplicações. 4º serie. Rio Grande do Sul: Simplissimo Livros Ltda. 2017. Cap. 3, p. 62-80. ASIN: B06XCYZ3FN CARDOSO, F.H.; JOBIM, N.A.; BARROS-NETO, S.R.; MALAN, P.; DORNELLES, F.; VARGAS, J.I. Lei No. 9,279, de Maio 14, 1996. Disponível em:<http://www.planalto.gov.br/ccivil_03/Leis/L9279.htm>. Acessado em: Maio 2020. CARNEVALE GG. 81f. 2015. Análise de interferentes na extração, amplificação e detecção de M. tuberculosis por reação de PCR em amostras de líquido pleural, escarro e lavado broncoalveolar. Tese (Doutorado em Ciências) Faculdade de medicina, Universidade de São Paulo. DOI: 10.11606/T.5.2016.tde-12012016-090128 CARREÑO, D.C.O.; RESTREPO, A.M. Microbial consortia: a biological metaphor applied to business association in agricultural production chains. Rev Fac Cienc Econ, v. 18, n. 2, p.55-74, 2010. ISSN 0121-6805. CARVALHO, P. C.; LIMA, D. B.; LEPREVOST, F. V.; SANTOS, M. D.; FISCHER, J. S.; AQUINO, P. F.; MORESCO, J. J.; YATES III, J. R.; BARBOSA, V. C. Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nature protocols, v. 11, n. 1, p. 102- 117, 2016. DOI: 10.1038/nprot.2015.133 CASE, R.J.; BOUCHER, Y.; DAHLLOF, I.; HOLMSTROM, C.; DOOLITTLE, W.F.; KJELLEBERG, S. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl. Environ. Microbiol. v. 73, p. 278–288, 2007. DOI: 10.1128/AEM.01177-06 CASTELLANI, A. Viability of some pathogenic fungi in distilled water. Journal of Tropical Medicine and Hygiene, v. 42, p. 225-226, 1939. DOI: 10.1007/BF02054872 CASTILHO, E.W.V. Patentes de Produtos de Origem Biológica. In: PICARELLI, M.F.S.; ARANHA, M.I. Política de Patentes de Saúde Humana. São Paulo: Atlas, 2001, pp. 70-88. CAUDURO, G. P.; FALCON, T.; LEAL, A. L.; VALIATI. Differential expression of genes involved in utilization of benzo (a) pyrene in Burkholderia vietnamiensis G4 strain. In: Frontiers International Conference on Wastewater Treatment and Modelling. Springer, Cham, p. 68- 72. 2017. DOI: 10.1007/978-3-319-58421-8_11 CBIE- Centro Brasileiro de Infraestrutura. Disponivel em:<https://cbie.com.br/artigos/quaissao-os-maiores-produtores-mundiais-depetroleo/#:~:text=Em%20primeiro%20lugar%20no%20ranking,%2C67%20milh%C3%B5es%20 b%2Fd> Acessado em Maio 2021. CENIS, J.L. Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Rese, v. 20, n. 2380, 1992. DOI: 10.1093/nar/20.9.2380 CERNIGLIA, C. E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, v. 3, n. 2-3, p. 351–368, 1992. DOI: 10.1007/BF00129093 186 CESKA, M. Enzymatic catalysis in solidified media. Eur J Biochem, v. 22, n. 2, p. 186-192, 1971. DOI: 10.1111/j.1432-1033.1971.tb01531.x CEVHER-KESKIN, B.; SELÇUKCAN-EROL, Ç.; YÜKSEL, B.; ERTEKIN, Ö.; YILDIZHAN, Y.; ONARICI, S.; MEMON, A. R. Comparative transcriptome analysis of Zea mays in response to petroleum hydrocarbon stress. Environmental Science and Pollution Research, v. 25, n. 32, p. 32660-32674, 2018. DOI: 10.1007/s11356-018-3078-8 CHADEGANI, A.; SALEHI, H.; YUNUS, M. M.; FARHADI, H.; FOOLADI, M.; FARHADI, M.; ALE EBRAHIM, N. A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, v. 9, p. 18-26, 2013. DOI: 10.5539/ass.v9n5p18 CHAKDAR, H.; THAPA, S.; SRIVASTAVA, A.; SHUKLA, P. Genomic and proteomic insights into the heavy metal bioremediation by cyanobacteria. Journal of Hazardous Materials, v. 424, p. 127609, 2022. DOI: 10.1016/j.jhazmat.2021.127609 CHAKRABORTY, C.; DOSS, C.G.; PATRA, B.C.; BANDYOPADHYAY, S. DNA barcoding to map the microbial communities: current advances and future directions. Appl. Microbiol. Biotechnol, v. 98, p. 3425–3436, 2014. DOI: 10.1007/s00253-014-5550-9 CHAKRABORTY, S.; GHOSH, M.; CHAKRABORTI, S.; JANA, S.; SEM, K.K.; KOKARE, C.; ZHANG, L. Biosurfactant produced from Actinomycetes nocardiopsis A17: Characterization and its biological evaluation. Int J Biol Macromol, v. 79, p. 405–412, 2015. DOI: 10.1016/j.ijbiomac.2015.04.068 CHANTARASIRI, A. Shewanella baltica strain jd0705 isolated from the mangrove wetland soils in thailand and characterization of its ligninolytic performance. Biodiversitas, v. 22, p. 354–361, 2021. DOI: 10.13057/biodiv/d220143 CHAPMAN, J.; ISMAIL, A.E.; DINU, C.Z. Industrial applications of enzymes: Recent advances, techniques, and outlooks. Catalysts, v. 8, n. 6, p. 238, 2018. DOI: 10.3390/catal8060238 CHAUHAN, A.; JAIN, R.K. Biodegradation: gaining insight through proteomics.Biodegradation, v. 21, n. 6, p. 861-879, 2010. DOI: 10.1007/s10532-010-9361-0 CHAUHAN, P.S.; GORADIA, B.; SAXENA, A. Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech, v.7, 2017. DOI: 10.1007/s13205-017-0955-7 CHEN, C. Y.; KO, T. P.; LIN, K. F.; LIN, B. L.; HUANG, C. H.; CHIANG, C. H.; HORNG, J. C NADH/NADPH bi-cofactor-utilizing and thermoactive ketol-acid reductoisomerase from Sulfolobus acidocaldarius. Scientific reports, v. 8, n. 1, p. 1-12, 2018. DOI:10.1038/s41598-018- 25361-4 CHEN, C.; WANG, Z.; ZHAO, M.; YUAN, B.; YAO, J.; CHEN, J. SAVITSKAYA T. A fungus–bacterium co-culture synergistically promoted nitrogen removal by enhancing enzyme 187 activity and electron transfer. Sci Total Environ, v. 754, p. 142109, 2021. DOI: 10.1016/j.scitotenv.2020.142109 CHEN, H., B, PC VennDiagram: um pacote para a geração de diagramas de Venn e Euler altamente personalizáveis em R.BMC Bioinformatics, 12, 35, 2011.DOI: 10.1186/1471-2105- 12-35 CHEN, S.H.; CHEOW, Y.L.; NG, S.L.; TING, A.S.Y. Biodegradation of triphenylmethane dyes by non-white rot fungus Penicillium simplicissimum: enzymatic and toxicity studies. Int J Environ Res, v. 13, n. 2, p. 273-282, 2019. DOI: 10.1007/s41742-019-00171-2 CHESHIRE, M. C.; BISH, D. L.; BRASSELL, S. C. Organic Geochemical Composition of the Georgia Kaolins: Insights Into Formation and Diagenetic Conditions. Clays and Clay Minerals, v. 60, n 4, p. 420-439, 2012. DOI: 10.1346/CCMN.2012.0600408 CHOMCZYNSKI, P.; SACCHI, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem, v. 162, p. 156-159, 1987. DOI: 10.1016/0003-2697(87)90021-2 CHRISTIAN, W. C.; BUTLER, T. M.; GHANNAM, R. B.; WEBB, P. N.; TECHTMANN, S. M. Phylogeny and diversity of alkane-degrading enzyme gene variants in the laurentian great lakes and western atlantic. FEMS Microbiology Letters, v. 367, n. 23, p. 182, 2020. DOI: 10.1093/femsle/fnaa182 CNI - Confederação Nacional da Indústria. Portal da Industria. 2017. Disponível em:<http://perfildaindustria.portaldaindustria.com.br/estado/ba#this>. Acessado em: maio 2020. COELHO, M. A.Z.; SALGADO, A. M.; RIBEIRO, B.D. Tecnologia enzimática, first ed. EPUB, Rio de Janeiro. 2008. CONAMA - Conselho Nacional do Meio Ambiente. Resolução Conama N° 357, de 17 de Março de 2005. Disponível em: < https://www.icmbio.gov.br/cepsul/images/ stories/legislacao/Resolucao/2005/res_conama_357_2005_classificacao_corpos_agua_rtfcda_altr d_res_393_2007_397_2008_410_2009_430_2011.pdf > Acesso em: nov 2021. CORDEIRO, A.F.; MORAES, M.C.; BERTÃO, M.R. Limpando DNA com detergente. Aprend Cienc, v. 4, p. 52-57, 2017. CORRÊA. S.; MELLO, M.; ÁVILA, Z.R.; BRAÚNA, L.M.; PÁDUA, R.R.; GOMES, D. Cepas de Trichoderma spp. para el control biológico de Sclerotium rolfsii Sacc. Fitosanidad, v. 11, n. 1, p. 3-9, 2007. CORTES-TOLALPA, L.; JIMÉNEZ, D.J.; DE LIMA BROSSI, M.J.; SALLES, J.F.; VAN ELSAS, J.D. Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Appl Microbiol Biotechnol, v. 100, n. 17, p. 7713-7725, 2016. DOI: 10.1007/s00253-016-7516-6 188 CORTES-TOLALPA, L.; SALLES, J.F.; VAN ELSAS, J.D. Bacterial synergism in lignocellulose biomass degradation–complementary roles of degraders as influenced by complexity of the carbon source. Front Microbiol, v. 8, p. 1628, 2017. DOI: 10.3389/fmicb.2017.01628 COSTA, M.R.; MOURA, E.F. Manual de extração de DNA. Belém: Embrapa. Amazônia Oriental. 2001. CRUZ, G. F. da; MARSAIOLI, A. J. Processos naturais de biodegradação do petróleo em reservatórios. Química Nova, São Paulo, v. 35, n. 8, 2012. DOI: 10.1590/S0100- 40422012000800024 CUI, J. Q.; LI, Y. Q.; HE, Q. S.; LI, B. Z.; YUAN, Y. J.; WEN, J. P. Effects of different surfactants on the degradation of petroleum hydrocarbons by mixed‐ bacteria. Journal of Chemical Technology & Biotechnology, v. 97, n. 1, p. 208-217, 2022. DOI: 10.1002/jctb.6931 CUI, JIE CUI; HUANG, L.; WANG, W.; PING, X.U.; ZANAROLI, G.; TANG, H. Maximization of the petroleum biodegradation using a synthetic bacterial consortium based on minimal value algorithm, International Biodeterioration & Biodegradation, v. 150, p. 104964, 2020. DOI: 10.1016/j.ibiod.2020.104964 CUNHA, C.D.; DA, LEITE, S.G.F.; OLIVEIRA, B.E.; D.E.; ROSADO, A.S.; ROSARIO, M.D.O. Processo de degradação de hidrocarbonetos e processo de produção de biossurfactante. Brasil patente BR0305960A. 2003. CURREEM, S. O.; WATT, R. M.; LAU, S. K.; WOO, P. C. Two-dimensional gel electrophoresis in bacterial proteomics. Protein & cell, v. 3, n. 5, p. 346-363, 2012.DOI: 10.1007/s13238-012- 2034-5 CYBULSKI, Z.; DZIURLA, E.W.A.; KACZOREK, E.W.A.; ANDRZEJ OLSZANOWSKI. The Influence of Emulsifiers on Hydrocarbon Biodegradation by Pseudomonadacea and Bacillacea Strains, Spill Science & Technology Bulletin, v. 8, n. 5-6, p. 503–507, 2003. DOI: 10.1016/S1353-2561(03)00068-9 DA FONSECA PIRES, S.; FIALHO JR, L. C.; SILVA, S. O.; MELO, M. N.; DE SOUZA, C. C.; TAFURI, W. L.; DE ANDRADE, H. M. Identification of virulence factors in Leishmania infantum strains by a proteomic approach. Journal of Proteome Research, v. 13, n. 4, p. 1860- 1872, 2014. DOI: 10.1021/pr400923g DA SILVA, S.A.; MORENO, T.F.; CAVALCANTE, L.C.V.; DE AMORIM, E.L.C.; DE GUSMÃO, C.D. Estudo do processo de biorremediação em solos impactados por derramamento de óleo. Diversitas Journal, v. 6, n. 1, p. 823-835, 2021.DOI: 10.17648/diversitas-journal-v6i1- 1685 DA SILVA-NETO, B.R; DOS SANTOS, B.K; COSTA, A.F. A Tecnologia Proteômica Como Estratégia Aplicada Ao Diagnóstico Laboratorial. Científic@-Multidisciplinary Journal, v. 6, n. 1, p. 04-15, 2019. DOI:10.29247/2358-260X.2019v6i1.p04-15 189 DAI, X.; LV, J.; GUO, S.; WEI, W. Heavy Oil Biodegradation by Mixed Bacterial Consortium of Biosurfactant-Producing and Heavy Oil-Degrading Bacteria. Polish Journal of Environmental Studies, v. 30, n. 1, 2021. DOI: 10.15244/pjoes/120769 DANTAS, C. P. Utilização de protótipo de biorreator de imersão temporária na biodegradação de petróleo em sedimento de manguezal. 2016. 107f. Dissertação (Mestrado em Geoquímica do Petróleo e Meio Ambiente) – Instituto de Geociências, Universidade Federal da Bahia, Salvador, 2016. < https://repositorio.ufba.br/bitstream/ri/25762/1/DANTAS,2016.pdf> DANTAS, C. P.; PINCHEMEL, J. P. D.; JESUS, G. M.; PIMENTEL, M. B.; OLIVEIRA, O. M. C.; LIMA, D. F. Bioprospection of ligninolytic enzymes from marine origin filamentous fungi. Anais da Academia Brasileira de Ciências, v. 93, 2021. DOI: 10.1590/0001-3765202120210296 DANTAS, C. P.; MARQUES, I. M.; CONCEIÇÃO, D. P.; LIMA, D. F.; DE OLIVEIRA, O. M. C. Selection of microorganisms for production of hydrocarbonoclastic consortium. In: XV Latim american congress on organic geochimistry, 2018, Salvador. Anais [...]. Disponível em:< http://alago2018.salvador.br/>. Acesso em jun 2019 DAS VIRGENS, G.S.; LUFT, M.C.M.S.; OLAVE, M.E.L.; DE QUEIROZ, L.S. Aspectos Inovadores das Micro e Pequenas Empresas participantes do Programa Agentes Locais de Inovação do Ciclo III em Sergipe. Ideias e Inovação, v. 4, n. 3, p. 87, 2018. ISSN: 2316-1299 DE CASTRO REINACH, F. Projeto Genoma. Revista USP, n. 7, p. 33-36, 1990. DOI: 10.11606/issn.2316-9036.v0i7p33-36 DE GONZALO G.; COLPA D.I.; HABIB, M.H.M.; FRAAIJE, M.W. Bacterial enzymes involved in lignin degradation. Journal of Biotechnol, v. 236, p. 110–119, 2016. DOI: 10.1016/j.jbiotec.2016.08.011 DE LA CRUZ, M. A.; CALVA, E. The complexities of porin genetic regulation. Journal of molecular microbiology and biotechnology, v. 18, n. 1, p. 24-36, 2010. DOI: 10.1159/000274309 DE OLIVEIRA, O. M.; QUEIROZ, A. F. D. S.; CERQUEIRA, J. R.; SOARES, S. A.; GARCIA, K. S.; PAVANI FILHO, A.; MOREIRA, Í. T. Environmental disaster in the northeast coast of Brazil: Forensic geochemistry in the identification of the source of the oily material. Marine Pollution Bulletin, v. 160, 111597, 2020. DOI: 10.1016/j.marpolbul.2020.111597 DE SALAS, F.; CAÑADAS, R.; SANTIAGO, G.; VIRSEDA-JEREZ, A.; VIND, J.; GENTILI, P.; MARTÍNEZ, A.T.; GUALLAR, V.; MUÑOZ, I.G.; CAMARERO, S. Structural and biochemical insights into an engineered high-redox potential laccase overproduced in Aspergillus. International Journal of Biological Macromolecules, v. 141, p. 855-867, 2019. DOI: 10.1016/j.ijbiomac.2019.09.052 DE SOUZA, N. A.; RAMAIAH, N.; DAMARE, S.; FURTADO, B.; MOHANDASS, C.; PATIL, A.; DE LIMA, M. Differential protein expression in Shewanella seohaensis decolorizing azo dyes. Current Proteomics, v. 16, n. 2, p. 156-164, 2019. DOI: 10.2174/1570164615666180731110845 190 DEBNATH, R.; MISTRY, P.; ROY, P.; ROY, B.; SAHA, T. Partial purification and characterization of a thermophilic and alkali-stable laccase of Phoma herbarum isolate KU4 with dye-decolorization efficiency. Preparative Biochemistry & Biotechnology, v. 51, n. 9, p. 1-8, 2021. DOI: 10.1080/10826068.2021.1875235 DELL’ANNO, F.; RASTELLI, E.; SANSONE, C.; BRUNET, C.; IANORA, A.; DELL’ANNO, A. Bacteria, fungi and microalgae for the bioremediation of marine sediments contaminated by petroleum hydrocarbons in the omics era. Microorganisms, v. 9, n. 8, p. 1695, 2021. DOI: 10.3390/microrganismos 9081695 DELOZIER, G.; HOLMES, J. Método para melhorar a capacidade de remoção de água de lodo. Brasil patente BRPI0615415A2. 2005. DESIDERATO, J.G.; ALVARENGA, D.O.; CONSTANCIO, M.T.; ALVES, L.; VARANI, A.M. The genome sequence of Dyella jiangningensis FCAV SCS01 from a lignocellulosedecomposing microbial consortium metagenome reveals potential for biotechnological applications. Genetics and Molecular Biology, v. 41, n. 2, p. 507-513, 2018. DOI: 10.1590/1678-4685-GMB-2017-0155 DIXIT, M.; GUPTA, G. K.; USMANI, Z.; SHARMA, M.; SHUKLA, P. Enhanced bioremediation of pulp effluents through improved enzymatic treatment strategies: A greener approach. Renewable and Sustainable Energy Reviews, v. 152, p. 111664, 2021. DOI: 10.1016/j.rser.2021.111664 DURAIRAJ, P.; HUR, J.S.; YUN, H. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Microbial Cell Factories, v. 15, 2016. DOI: 10.1186/s12934-016-0523-6 DURÓN-CASTELLANOS, A.; ZAZUETA-NOVOA, V.; SILVA-JIMÉNEZ, H.; ALVARADOCAUDILLO, Y.; CABRERA, E. P.; ZAZUETA-SANDOVAL, R. Detection of NAD+- dependent alcohol dehydrogenase activities in YR-1 strain of Mucor circinelloides, a potential bioremediator of petroleum contaminated soils. Applied biochemistry and biotechnology, v. 121, n. 1, p. 279-288, 2005. EBADI, A.; SIMA, N. A. K.; OLAMAEE, M.; HASHEMI, M.; NASRABADI, R. G. Effective bioremediation of a petroleum-polluted saline soil by a surfactant-producing Pseudomonas aeruginosa consortium, Journal of Advanced Research, v. 8, n. 6, p. 627-633, 2017. DOI: 10.1016/j.jare.2017.06.008 ELDRIDGE, H. C.; MILLIKEN, A.; FARMER, C.; WENDLAND, N.; COWARD, L.; GREGORY, D.J.; JOHNSON, C.M. Efficient remediation of 17α-ethinylestradiol by Lentinula edodes (shiitake) laccase. Biocatalysis and Agricultural Biotechnology,v. 10, p. 64-68, 2017. DOI: 10.1016/j.bcab.2017.02.004 ELISASHVILI, V.; KACHLISHVILI, E.; KHARDZIANI, T.; AGATHOS, S.N. Effect of aromatic compounds on the production of laccase and manganese peroxidase by white-rot basidiomycetes. Journal of Industrial Microbiology and Biotechnology, v. 37, n. 10, p. 1091- 1096, 2010. DOI: 10.1007/s10295-010-0757-y 191 ELSAEED, E.; ENANY, S.; HANORA, A.; FAHMY, N. Comparative metagenomic screening of aromatic hydrocarbon degradation and secondary metabolite-producing genes in the Red Sea, the Suez Canal, and the Mediterranean Sea. OMICS: A Journal of Integrative Biology, v. 24, n. 9, p. 541-550, 2020. DOI: 10.1089/omi.2020.0070 ELSEVIER. Scopus content overage guide. 2017. p. 28. Disponível em:<https://www.elsevier.com/solutions/scopus/content> Acesso em: dez 2017 EL-SHORA, H.M.; YOUSSEF, M.M.; KHALAF, S.A. 2008. Inducers and inhibitors of laccase from Penicillium. Biotechnology, v. 7, n. 1, p. 35-42, 2008. DOI: 10.3923/biotech.2008.35.42 ELUFISAN, T.O.; RODRÍGUEZ-LUNA, I.C.; OYEDARA, O.O.; SÁNCHEZ-VARELA, A.; HERNÁNDEZ-MENDOZA, A.; GONZALEZ, E.D.; PAZ-GONZÁLEZ, A.D.; MUHAMMAD, K.; RIVERA, G.; VILLALOBOS-LOPEZ, M.A.; GUO, X. The Polycyclic Aromatic Hydrocarbon (PAH) degradation activities and genome analysis of a novel strain Stenotrophomonas sp. Pemsol isolated from Mexico. PeerJ, 8, e810, 2020. DOI: 10.7717/peerj.8102 ELUMALAI, P.; PARTHIPAN, P.; NARENKUMAR, J.; ANANDAKUMAR, B.; MADHAVAN, J.; OH, B. T.; RAJASEKAR, A. Role of thermophilic bacteria (Bacillus and Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3 Biotech, v. 9, n. 3, p. 1-11, 2019. DOI: 10.1007/s13205-019-1604-0 EMIDIO, N. B.; CARPANEZ, A. G.; QUELLIS, L. R.; FARANI, P. S.; VASCONCELOS, E. G.; FARIA-PINTO, P. Proteômica: uma introdução aos métodos e aplicações. HU Revista, v. 41, n. 3 e 4, 2015. EPA, U. S. Method 3510C: Separatory Funnel Liquid-Liquid Extraction. SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. United States Environmental Protection Agency, Washington, DC, 1996a. EPA, U. S. Method 3540C. Soxhlet Extraction-Organics.Test Methods for Evaluating Solid Waste, 1996b. EPA, U.S. Method 8270 D. Semivolatile organic compound by gas chromatography/mass spectrometry (GC/MS). 2007 EPA. United States Environmental Protection Agency. Priority Pollutant List, p.2, 2014. Disponível em<https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act>. Acesso em: fev 2022. ERICKSON, B. K.; MUELLER, R. S.; VERBERKMOES, N. C.; SHAH, M.; SINGER, S. W.; THELEN, M. P.; HETTICH, R. L. Computational prediction and experimental validation of signal peptide cleavages in the extracellular proteome of a natural microbial community. Journal of proteome research, v. 9, n. 5, p. 2148-2159, 2010. DOI: 10.1021/pr900877a ESTEVO, M., LOPES, P. F.; DE OLIVEIRA JÚNIOR, J. G. C.; JUNQUEIRA, A. B.; DE OLIVEIRA SANTOS, A. P.; DA SILVA LIMA, J. A.; CAMPOS-SILVA, J. V. Immediate social 192 and economic impacts of a major oil spill on Brazilian coastal fishing communities. Marine Pollution Bulletin, v. 164, p. 111984, 2021. DOI: 10.1016/j.marpolbul.2021.111984 EUROPEAN COMMISSION. Council Directive 98/83/EC, Off. J. Eur. Commun, L330, 32., 1998. EXPORTGENIUS. Brazil Import Data. Disponível em:<https://www.exportgenius.in/exportimport-trade-data/brazil-import.php.> Acessado em: julho 2021. EZEKOYE, C.C.; CHIKERE, C.B.; OKPOKWASILI, G.C. Fungal diversity associated with crude oil-impacted soil undergoing in-situ bioremediation. Sustain Chem Pharm, v. 10, p. 148– 152, 2018. DOI: 10.1016/j.scp.2018.11.003 FANG, X.; LI, Q.; LIN, Y.; LIN, X.; DAI, Y.; GUO, Z.; PAN, D. Screening of a microbial consortium for selective degradation of lignin from tree trimmings. Bioresour Technol, v. 254, p. 247–255, 2018. DOI: 10.1016/j.biortech.2018.01.058 FANG, Y.; LIU, J.; KONG, G.; LIU, X.; YANG, Y.; LI, E.; XU, M. Adaptive responses of Shewanella decolorationis to toxic organic extracellular electron acceptor azo dyes in anaerobic respiration. Applied and environmental microbiology, v. 85, n. 16, p. e00550-19, 2019. DOI: 10.1128/AEM.00550-19 FELSENSTEIN, J. Confidence limits on philogenies: an approach using the bootstrap. Evolution, v. 39, n. 4, p. 783-791, 1985. DOI: 10.1111/j.1558-5646.1985.tb00420.x FERRARONI, M.; WESTPHAL, A.H.; BORSARI, M.; TAMAYO-RAMOS, J.A.; BRIGANTI, F.; DE GRAAFF, L.H.; VAN BERKEL, W.J. Structure and function of Aspergillus niger laccase McoG. Biocatalysis, v. 3, n. 1, p. 1-21, 2017. DOI: 10.1515/boca-2017-0001 FORSTALL, R.L. Review Factors Affecting Domestic and International Agricultural Input price.United States, Congress, House, Committee on Agriculture, 2000, pp.62. FOX, J.; BOUCHET-VALAT, M. Rcmdr: R Commander. R package version 2.p. 7-1, 2020 FU, J.; MAI, B.; SHENG, G.; ZHANG, G.; WANG, X.; XIAO, X.; TANG, U. W. Persistent organic pollutants in environment of the Pearl River Delta, China: an overview. Chemosphere, v. 52, n. 9, p. 1411-1422, 2003. DOI: 10.1016/S0045-6535(03)00477-6 FUENTES, S.; MÉNDEZ, V.; AGUILA, P.; SEEGER, M. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications. Applied Microbiology and Biotechnology, v. 98, p. 4781-4794, 2014. DOI: 10.1007/s00253-014-5684-9 FUKUSHIMA, Y.; KIRK, T.K. Laccase component of the Ceriporiopsis subvermispora lignindegrading system. Applied and Environmental Microbiology, v. 61, n. 3, p. 872-876, 1995. DOI: 10.1128/aem.61.3.872-876.1995 GAGLIANONE, P. C.; TRINDADE, L. A. F. Caracterização Geoquímica dos óleos da Bacia do Recôncavo. Geochimica Brasiliensis, v. 2, n. 1, p. 15-39, 1988. DOI:10.21715 193 GALILI, T.; O’CALLAGHAN, A.; SIDI, J.; SIEVERT, C. Heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics, v. 34, n. 9, p. 1600-1602, 2018. DOI: 10.1093/bioinformática/btx657 GALVÃO, T. F.; PANSANI, T. D. S. A.; HARRAD, D. Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e Serviços de Saúde, 24, 335-342, 2015. DOI: 10.5123/S1679-49742015000200017 GANESH KUMAR, A.; MATHEW, N.C.; SUJITHA, K.; KIRUBAGARAN, R.; DHARANI, G. Genome analysis of deep sea piezotolerant Nesiotobacter exalbescens COD22 and toluene degradation studies under high pressure condition. Scientific reports, v. 9, n. 1, p. 1-14, 2019. DOI: 10.1038/s41598-019-55115-9 GANGOLA, S.; JOSHI, S.; KUMAR, S.; SHARMA, B.; SHARMA, A. Differential proteomic analysis under pesticides stress and normal conditions in Bacillus cereus 2D. PLoS One, v. 16, 2021. DOI: 10.1371/journal.pone.0253106 GAO, Y.; DU, J.; BAHAR, M. M.; WANG, H.; SUBASHCHANDRABOSE, S.; DUAN, L; NAIDU, R. Metagenomics analysis identifies nitrogen metabolic pathway in bioremediation of diesel contaminated soil. Chemosphere, v. 271, p. 129566, 2021. DOI: 10.1016/j.chemosphere.2021.129566 GARCEZ-JÚNIOR, S.S.; MOREIRA, J.J.S. The patent backlog in Brazil: the right to a reasonable length of administrative proceedings. Revista Direito GV, v. 13, n. 1, p. 171-203, 2017. DOI: 10.1590/2317-6172201708 . GARMORY, H. S.; TITBALL, R. W. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infection and immunity, v. 72, n. 12, p. 6757-6763, 2004. DOI: 10.1128/IAI.72.12.6757-6763.2004 GERBA, I. L.; PEPPER, C. P. Environmental Microbiology: a laboratory manual. 2 ed. California: Elsevier Academic Press. 2004. 226 p. GHOSH, I. Ranked: The 100 Most Spoken Languages Around the World. 2020. Disponível em:< https://www.visualcapitalist.com/100-most-spoken-languages/> Acesso em: maio 2020. GHOSH, P.; MUKHERJI, S. Modeling growth kinetics and carbazole degradation kinetics of a Pseudomonas aeruginosa strain isolated from refinery sludge and uptake considerations during growth on carbazole. Science of The Total Environment, v. 738, p. 140277, 2020. DOI: 10.1016/j.scitotenv.2020.140277 GHOSH, S.; CHOWDHURY, R.; BHATTACHARYA, P. Mixed consortia in bioprocesses: role of microbial interactions. Applied Microbiology and Biotechnology, v. 100, p. 4283-4295, 2016. DOI: 10.1007/s00253-016-7448-1 GKOREZIS, P.; DAGHIO, M.; FRANZETTI, A.; VAN HAMME, J.D.; SILLEN, W.; VANGRONSVELD, J. The interaction between plants and bacteria in the remediation of 194 petroleum hydrocarbons: An environmental perspective. Front Microbiol, v. 7, p. 1836, 2016. DOI: 10.3389/fmicb.2016.01836 GLENN, J.K.; AKILESWARAN, L.; GOLD, M.H. Mn (II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys, v. 251, n. 2, p. 688-696, 1986. DOI: 10.1016/0003-9861(86)90378-4 GONCALVES, O.; QUINTELLA, C.M.A.L.T.M.A. Processo microbiológico para captura de voláteis e produção de biopolímero proteico. Brasil patente BRPI1105932A2, 2013. GOUVEIA, F. Inovação e patentes: o tempo de amadurecimento no Brasil. Inovação Uniemp. v. 3, n. 3, p. 24-25, 2007. ISSN 1808-2394 GOVARTHANAN, M.; FUZISAWA, S.; HOSOGAI, T.; CHANG, Y.C. Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC advances, v. 7, n. 34, p. 20716- 20723, 2017. DOI: 10.1039/C6RA28687A GOVERNO DO BRASIL. 2020. Spot na costa do Brasil: Conter, limpar e preservar. Disponível em< https://brasil.gov.br/manchanolitoral/#numeros> Acessado em: maio 2020. GRATIVOL, A.D.; MARCHETTI, A.A.; WETLER-TONINI, R.M.; VENANCIO, T.M.; GATTS, C.E.; THOMPSON, F.L.; REZENDE, C.E. Bacterial interactions and implications for oil biodegradation process in mangrove sediments. Marine Pollution Bulletin, v. 118, p. 221– 228, 2017. DOI: 10.1016/j.marpolbul.2017.02.052 GRAY, A.L.; GRAY, N.C.C. Processo para descontaminação de solo contendo contaminantes do tipo DDT. Brasil patente BR 9611238A. 1999. GRAY, K.; MATHUR, E.J.; RICHARDSON, T.; ROBERTSON, D.; SHORT, J.M. Enzimas tendo atividade de desalogenase e métodos de uso destas. Brasil Patente BR0115875A. 2000. GRAY, N.C.C.; MOSER, G.P.; MOSER, L.E. Processo de descontaminação do solo. Brazil patent BR9712606A. 1999. GRIFFIN, D.W.; KELLOGG, C.A.; PEAK, K.K.; SHINN, E.A. A rapid and efficient assay for extracting DNA from fungi. Letters in Applied Microbiology, v. 34, p. 210-214, 2002. DOI: 10.1046/j.1472-765x.2002.01071.x GU, H.; CHEN, Y.; LIU, X.; WANG, H.; SHEN-TU, J.; WU, L.; XU, J. The effective migration of Massilia sp. WF1 by Phanerochaete chrysosporium and its phenanthrene biodegradation in soil. Science of the Total Environment, v. 593, p. 695-703, 2017. DOI: 10.1016/j.scitotenv.2017.03.205 GUENGERICH, F. P.; MACDONALD, T. L. Mechanisms of cytochrome P‐ 450 catalysis. The FASEB journal, v. 4, n. 8, p. 2453-2459, 1990. DOI: 10.1096/fasebj.4.8.2185971 195 GUERRA, A.B.; OLIVEIRA, J.S.; SILVA-PORTELA, R.C.B.; ARAÚJO, W.; CARLOS, A.C.; VASCONCELOS, A.T.R.; FREITAS, A.T.; DOMINGOS, Y.S.; DE FARIAS, M.F.; FERNANDES, G.J.T.; AGNEZ-LIMA, L.F. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environmental Pollution, v. 235, p. 869–880, 2018. DOI: 10.1016/j.envpol.2018.01.014 GUO, H.; SUZUKI, T.; RUBINSTEIN, J. L. Structure of a bacterial ATP synthase. Elife, v. 8, p. e43128, 2019. DOI: 10.7554/eLife.43128 GUPTA, G.; KUMAR, V.; PAL, A. K. Biodegradation of polycyclic aromatic hydrocarbons by microbial consortium: a distinctive approach for decontamination of soil. Soil and Sediment Contamination: An International Journal, v. 25, n. 6, p. 597-623, 2016. DOI: 10.1080/15320383.2016.1190311 GUPTA, GAURI; KUMAR, VIPIN; PAL, A. K. Microbial degradation of high molecular weight polycyclic aromatic hydrocarbons with emphasis on pyrene. Polycyclic Aromatic Compounds, v. 39, n. 2, p. 124-138, 2019. DOI: 10.1080/10406638.2017.1293696 GUPTA, S.; SINGH, D. Role of genetically modified microorganisms in heavy metal bioremediation. In: KUMAR, R.; SHARMA, A.K.; AHLUWALIA, S.S. Advances in Environmental Biotechnology Springer, Singapore, 2017, pp. 197-214. DOI: 10.1007/978-981- 10-4041-2_12 GURAV, R.; LYU, H.; MA, J.; TANG, J.; LIU, Q.; ZHANG, H. Degradation of n-alkanes and PAHs from the heavy crude oil using salt-tolerant bacterial consortia and analysis of their catabolic genes. Environmental Science and Pollution Research, v. 24, n. 12, p. 11392-11403, 2017. DOI: 10.1007/s11356-017-8446-2 HABE, H.; OMORI, T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Bioscience, biotechnology, and biochemistry, v. 67, n. 2, p. 225-243, 2003. DOI: 10.1271/bbb.67.225 HABIB, S.; JOHARI, W.L.W.; SHUKOR, M.Y.; YASID, N.A. Screening of hydrocarbondegrading bacterial isolates using the redox application of 2, 6-DCPIP. Bioremediat. Sci and Technol Res, v. 5, n. 2, p. 13-16, 2017. DOI: 10.54987/bstr.v5i2.358 HAGER, J.W. Recent trends in mass spectrometer development. Analytical and Bioanalytical Chemistry, v. 378, n. 4, p. 845-850, 2004. DOI: 10.1007/s00216-003-2287-1 HALL, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium, v. 41, p. 95-98, 1999. DOI: 10.14601/Phytopathol_Mediterr-14998u1.29 HANKIN, L.; ANAGNOSTAKIS, S. L. The use of solid media for detection of enzyme production by fungi. Mycologia, v. 67, n. 3, p. 597-607, 1975. DOI: 10.1080/00275514.1975.12019782 196 HANSON K.G.; DESAI, J.D.; DESAI, A.J. A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnology and Technology, v. 7, p. 745-748, 1993. DOI: 10.1007/BF00152624 HARAYAMA, S.; KOK, M.; NEIDLE, E. L. Functional and evolutionary relationships among diverse oxygenases. Annual review of microbiology, v. 46, n. 1, p. 565-601, 1992. DOI: 10.1146/annurev.mi.46.100192.003025 HASSANSHAHIAN M.; AMIRINEJAD, N., ASKARINEJAD, B. M. Crude oil pollution and biodegradation at the Persian Gulf: A comprehensive and review study. Journal of Environmental Health Science and Engineering, v.18, p.1415–1435, 2020. DOI: 10.1007/s40201-020-00557-x HEBERT, P. D.; CYWINSKA, A.; BALL, S. L.; DEWAARD, J. R. Biological identifications through DNA barcodes. Philos. Philosophical Transactions of the Royal Society B, v. 270, p. 313–321, 2003. DOI: 10.1098/rspb.2002.2218 HECHMI, N.; BOSSO, L.; EL-BASSI, L.; SCELZA, R.; TESTA, A.; JEDIDI, N.; RAO, M.A. Depletion of pentachlorophenol in soil microcosms with Byssochlamys nivea and Scopulariopsis brumptii as detoxification agents. Chemosphere, v. 165, p. 547-554, 2016. DOI: 10.1016/j.chemosphere.2016.09.062 HEINZ, K.G.H.; DOMINGUEZ, A.C.; SILVA, P.R.; BOTELHO, T.K.R.; TAVARES, L.B.B. Avaliação da atividade hidrolítica de micro-organismos isolados de resíduo do processamento de papel. Revista de Estudos Ambientais, v. 16, n. 2, p. 37-47,2015. DOI: 10.7867/1983- 1501.2014v16n2p37-47 HERNÁNDEZ-MARTÍNEZ, R.; GUTIÉRREZ-SÁNCHEZ, G.; BERGMANN, C.W.; LOERACORRAL, O.; ROJO-DOMÍNGUEZ, A.; HUERTA-OCHOA, S.; PRADO-BARRAGÁN, L.A. Purification and characterization of a thermodynamic stable serine protease from Aspergillus fumigatus. Process Biochemistry, v. 46, n. 10, p. 2001-2006, 2011. DOI: 10.1016/j.procbio.2011.07.013 HOU, L.; MAJUMDER, E. L. W. Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials, v. 14, n. 3, p. 503, 2021. DOI: 10.3390/ma14030503 HOUBRAKEN, J.; SAMSON, R.A.; FRISVAD, J.C. Byssochlamys: significance of heat resistance and mycotoxin production. Advances in Food Mycology, v. 571, p. 211-224, 2006. DOI: 10.1007/0-387-28391-9_14 HU, H.L.; VAN DEN BRINK, J.; GRUBEN, B.S.; WÖSTEN, H.A.B.; GU, J.D.; DE VRIES, R.P. Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. International Biodeterioration & Biodegradation, v. 65, n. 1, p 248-252, 2011. DOI: 10.1016/j.ibiod.2010.11.008 197 HUANG, H.; TANG, J.; NIU, Z.; GIESY, J. P. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. Chemosphere, v. 229, p. 418-425, 2019. DOI: 10.1016/j.chemosphere.2019.04.150 HUARTE-BONNET, C.; KUMAR, S.; SAPARRAT, M. C.N.; GIROTI, J.R.; SANTANA, M.; HALLSWORTH, J.E.; PEDRINI, N. Insights into Hydrocarbon Assimilation by Eurotialean and Hypocrealean Fungi: Roles for CYP52 and CYP53 Clans of Cytochrome P450 Genes. Applied biochemistry and biotechnology, v. 184, n. 3, p. 1047-1060, 2018. DOI: 10.1007/s12010-017- 2608-z HUNDIWALE, J. C.; PATIL, M. S.; PATIL, A. V. Bioremediation: A Potential Tool for Minimizing Industrial, Agricultural and Environmental Pollution.In: Sharma D.K.(Ed). New Vistas in Microbial Sciences, Integrated Publications: India. v.1, p. 123, 2021. IBAMA - Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, 2020. Manchas de óleo: costa brasileira. Cartilha informativa sobre a trajetória do acidente. Disponível em:< https://www.ibama.gov.br/phocadownload/ emergenciasambientais/2020/manchasdeoleo/ibama-manchasdeoleo-desmobilizacaocartilha_v2.pdf.> Acesso em: maio 2020. IBAMA - Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis. Manchas de Óleo Litoral do Nordeste, 2020. Disponível em:<http://www.ibama.gov.br/manchasdeoleo> Acesso em: dez 2020. IMAM, A.; SUMAN, S. K.; KANAUJIA, P. K.; RAY, A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. Bioresource Technology, v. 343, p. 126121, 2022. DOI: 10.1016/j.biortech.2021.126121 INVITROGEN. Qubit® 2.0 Fluorometer: Manual user. Catalog no. Q32866. 2010. Disponível em :< https://www.mbl.edu/jbpc/files/2014/05/Qubit2_Fluorometer_ UserManual.pdf> Acesso em: out 2019. IQBAL, A.; MUKHERJEE, M.; RASHID, J.; KHAN, S. A.; ALI, M. A.; ARSHAD, M. Development of plant-microbe phytoremediation system for petroleum hydrocarbon degradation: An insight from alkb gene expression and phytotoxicity analysis. Science of the Total Environment, v. 671, p. 696-704, 2019. DOI: 10.1016/j.scitotenv.2019.03.331 IRD - Institut de recherche pour le développement, 2020. Disponível em:<https://www.ird.fr/> Acesso em: maio 2020. ISAACSON, T.; DAMASCENO, C. M.; SARAVANAN, R. S.; HE, Y., CATALÁ, C.; SALADIÉ, M.; ROSE, J. K. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nature protocols, v. 1, n. 2, p. 769-774, 2006. DOI:10.1038/nprot.2006.102 ITOF – Internacional Tanker Owners Polluiton Federation Limited. Oil Tanker Spill Statistics 2021. 2021. Disponível em:< https://www.itopf.org/knowledge-resources/datastatistics/statistics/> Acesso em: abr 2022. 198 ITOPF - Internacional Tanker Owners Polluiton Federation Limited. Oil Tanker Spill Statistics 2020. Disponível em: < https://www.itopf.org/fileadmin /uploads/ itopf/ data/ Documents/ Company_Lit/Oil_Spill_Stats_publication_2020.pdf> Acessado em: dez 2021. ITOPF. Internacional Tanker Owners Polluiton Federation Limited. Data Statistics. Disponível em:< http://www.itopf.com/knowledge-resources/data-statistics/statistics/> Acesso em jan 2018. IVANOVA, N. V; DEWAARD, J. R; HEBERT, P. D. An inexpensive, automation‐ friendly protocol for recovering high‐ quality DNA. Molecular ecology notes, v. 6, n. 4, p. 998-1002, 2006. DOI: 10.1111/j.1471-8286.2006.01428.x IZRAEL-ŽIVKOVIĆ, L.; RIKALOVIĆ, M.; GOJGIĆ-CVIJOVIĆ, G.; KAZAZIĆ, S.; VRVIĆ, M.; BRČESKI, I.; KARADŽIĆ, I. Cadmium specific proteomic responses of a highly resistant Pseudomonas aeruginosa san ai. RSC advances, v. 8, n. 19, p. 10549-10560, 2018. DOI: 10.1039/C8RA00371H JANUSZ, G.; PAWLIK, A.; ŚWIDERSKA-BUREK, U.; POLAK, J.; SULEJ, J.; JAROSZWILKOŁAZKA, A.; PASZCZYŃSKI, A. Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences, v. 21, p. 966, 2020. DOI: 10.3390/ijms21030966 JAWHARI, I. F. H. A. Ability of Some Soil Fungi in Biodegradation of Petroleum Hydrocarbon. Journal of Applied & Environmental Microbiology, v. 2, n. 2, p. 46-52, 2014. DOI:10.12691/jaem-2-2-3 JCR. Journal Citation Reports. Disponível em:<https://jcr.clarivate.com>. Acesso em: out 2021. JEFFRIES, M.K.S.; KISS, A.J.; SMITH, A.W.; ORIS, J.T. A comparison of commerciallyavailable automated and manual extraction kits for the isolation of total RNA from small tissue samples. BMC Biotechnology, v. 94, p.1-14, 2014. DOI:10.1186/s12896-014-0094-8 JESUS, T. B.; SOUZA, S. S.; SANTOS, L. T. S. O.; DE AGUIAR, W. M. Avaliação da potencialidade de utilização de espécies de macrófitas como acumuladoras de metais pesados. Revista Virtual Química, n. 7, v. 4, p. 1102-1118, 2015. DOI: 10.5935/1984-6835.20150061 JI, Y.; MAO, G.; WANG, Y.; BARTLAM, M. Structural insights into diversity and n-alkane biodegradation mechanisms of alkane hydroxylases. Frontiers in Microbiology, v. 4, 2013. DOI: 10.3389/fmicb.2013.00058 JIANG, G.; YANG, J.; LI, X.; CAO, Y.; LIU, X.; LING, J.; WANG, H.; ZHONG, Z.; ZHU, J. Alkyl hydroperoxide reductase is important for oxidative stress resistance and symbiosis in Azorhizobium caulinodans. FEMS microbiology letters, v. 366, n. 3, p. 014, 2019. DOI: 10.1093/femsle/fnz014 JIMÉNEZ, D.J.; CHAIB, DE M.M.; SALLES, J.F. Temporal expression dynamics of plant biomass-degrading enzymes by a synthetic bacterial consortium growing on sugarcane bagasse. Frontiers in Microbiology, v. 9, p. 299, 2018. DOI: 10.3389/fmicb.2018.00299 199 JIN, J.; YAO, J.; LIU, W.; ZHANG, Q.; LIU, J. Fluoranthene degradation and binding mechanism study based on the active-site structure of ring-hydroxylating dioxygenase in Microbacterium paraoxydans JPM1. Environmental Science and Pollution Research, v. 24, n. 1, p. 363-371, 2017. DOI: 10.1007/s11356-016-7809-4 JSR. Scimago Journal & Country Rank. Disponível em:<https://www.scimagojr.com>.Acesso em: out 2021. JUÁREZ-SEGOVIA, K.G.; DÍAZ-DARCÍA, E.J.; MÉNDEZ-LÓPEZ, M.D.; PINA-CANSECO, M.S.; PÉREZ-SANTIAGO, A.D.; SÁNCHEZ-MEDINA, M.A. Efecto de extractos crudos de ajo (Allium sativum) sobre el desarrollo in vitro de Aspergillus parasiticus y Aspergillus niger. Polibotánica, v. 47, p. 99-111, 2019. DOI: 10.18387/polibotanica.47.8 JUHASZ, A.L.; STANLEY, G.A.; BRITZ, M.L. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Letters in Applied Microbiology, v. 30, p. 396–401, 2000. DOI: 10.1046/j.1472- 765x.2000.00733.x KADRI, T.; ROUISSI, T.; BRAR, S. K.; CLEDON, M.; SARMA, S.; VERMA, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. Journal of Environmental Sciences, v. 51, p. 52–74, 2017. DOI: 10.1016/j.jes.2016.08.023 KAFAEI, R.; ARFAEINIA, H.; SAVARI, A.; MAHMOODI, M.; REZAEI, M.; RAYANI, M.; SORIAL, G.A.A.; FATTAHI, N.; RAMAVANDI, B. Organochlorine pesticides contamination in agricultural. Chemosphere, v. 240, p. 1-9, 2020. DOI: 10.1016/j.chemosphere.2019.124983 KALOGERAKIS, N.; FAVA, F.; CORVINE, P.F. Bioremediation advances. N Biotech, v. 38, p. 41-42, 2017. KASHYAP, N.; ROY, K.; MOHOLKAR, V. S. Mechanistic investigation in Co-biodegradation of phenanthrene and pyrene by Candida tropicalis MTCC 184. Chemical Engineering Journal, v. 399, p. 125659, 2020. DOI: 10.1016/j.cej.2020.125659 KATHIRESAN, K. Salt-tolerant Microbes in Mangroves: Ecological Role and Bioprospecting Potential. Research Developments in Saline Agriculture, p. 237–255, 2019. DOI: 10.1007/978- 981-13-5832-6_7 KELLNER, H.; LUIS, P.; PECYNA, M.J.; BARBI, F.; KAPTURSKA, D.; KRÜGER, D.; HOFRICHTER, M. Widespread occurrence of expressed fungal secretory peroxidases in forest soils. PLoS One, v. 9, n. 4, p. e95557, 2014. DOI: 10.1371/journal.pone.0095557 KHAN, N. T. Integration of bioinformatics in bioremediation. International Journal of Biomedical Data Mining, v. 7, p. 1000130, 2018. DOI: 10.4172/2090-4924.1000130 KHEMILI-TALBI, S.; KEBBOUCHE-GANA, S.; AKMOUSSI-TOUMI, S.; ANGAR, Y.; GANA, M. L. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles, v. 19, n. 6, p. 1109-1120, 2015. DOI: 10.1007/s00792-015-0783-9 200 KILLOPS, S. D.; AL-JUBOORI, M. A. H. A. Characterisation of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. Organic geochemistry, v. 15, n. 2, p. 147-160, 1990. DOI: 10.1016/0146-6380(90)90079-F KIM, D.; CHAE, J. C.; ZYLSTRA, G. J.; KIM, Y. S.; KIM, S. K.; NAM, M. H.; KIM, E. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17. Applied and Environmental Microbiology, v. 70, n. 12, p. 7086-7092, 2004. DOI: 10.1128/AEM.70.12.7086-7092.2004 KIM, H.R.; LEE, H.M.; YU, H.C.; JEON, E.; LEE, S.; LI, J.; KIM, D.-H. Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environmental science & technology, v. 54, n. 11, p. 6987-6996, 2020. DOI: 10.1021/acs.est.0c01495 KIM, T.; LEE, C.; LEE, J.; BAE, H.; NOH, J.; HONG, S.; KHIM, J. S. Best Available Technique for Remediation of Marine Benthic Communities after Oil Spills: A Mesocosm-Based Integrated Assessment. Available at SSRN 4056814.2022. DOI: 10.1016/j.jhazmat.2022.128945 KOOLIVAND; KOOLIVAND, A.; SAEEDI, R.; COULON, F.; KUMAR, V.; VILLASEÑOR, J.; ASGHARI, F.; HESAMPOOR, F. Bioremediation of petroleum hydrocarbons by vermicomposting process bioaugmentated with indigenous bacterial consortium isolated from petroleum oily sludge, Ecotoxicology and Environmental Safety, v. 198, p.110645, 2020. DOI: 10.1016/j.ecoenv.2020.110645 KOVALEVA, E.G.; LIPSCOMB, J.D. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science, v. 316, n. 5823, p. 453-457, 2007. DOI: 10.1126/ciência.1134697 KRELING, N. E.; SIMON, V.; FAGUNDES, V. D.; THOMÉ, A.; COLLA, L. M. Improving the Bioremediation and in situ Production of Biocompounds of a Biodiesel-Contaminated Soil. Environmental management, v. 68, n. 2, p. 210-225, 2021. DOI:10.1007/s00267-021-01486-7 KRISHNAMOORTHY, R.; JOSE, P.A.; RANJITH, M.; ANANDHAM, R.; SUGANYA, K.; PRABHAKARAN, J.; THIYAGESHWARI, S.; JOHNSON, J.; GOPAL, N.O.; KUMUTHA, K. Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. Journal of Environmental Chemical Engineering, v. 6, n. 1, p. 588–595, 2018. DOI: 10.1016/j.jece.2017.12.035 KUHN, R.; BÖLLMANN, J.; KRAHL, K.; BRYANT, I.M.; MARTIENSSEN, M. Comparison of ten different DNA extraction procedures with respect to their suitability for environmental samples. Journal of Microbiological Methods, v. 143, p. 78-86, 2017. DOI: 10.1016/j.mimet.2017.10.007 KUMAR, A.; CHANDRA, R. Biodegradation and toxicity reduction of pulp paper mill wastewater by isolated laccase producing Bacillus cereus AKRC03. Cleaner Engineering and Technology, v. 4, p. 100193, 2021. DOI: 10.1016/j.clet.2021.100193 201 KUMAR, A.; CHANDRA, R. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon, v. 6, n. 2, p. e03170, 2020. DOI: 10.1016/j.heliyon.2020.e03170 KUMAR, M.; MUGUNTHAN, M. Evaluation of three DNA extraction methods from fungal cultures. Medical Journal Armed Forces India, v. 74, p. 333-336, 2018. DOI: 10.1016/j.mjafi.2017.07.009 KUMAR, N.; JEENA, N.; GANGOLA, S.; SINGH, H. Phytoremediation facilitating enzymes: an enzymatic approach for enhancing remediation process. In: BHATT, P. Smart Bioremediation Technologies. Academic Press, 2019, p. 289-306. DOI: 10.1016/B978-0-12- 818307-6.00015-9 KUMAR, R.; KAUR, J.; JAIN, S.; KUMAR, A. Optimization of laccase production from Aspergillus flavus by design of experiment technique: Partial purification and characterization. Journal of Genetic Engineering and Biotechnology, v. 14, n. 1, p. 125-131, 2016. KUMAR, S.; STECHER, G.; LI, M.; KNYAZ, C.; TAMURA, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, v. 35, p.1547–1549, 2018. DOI: 10.1093/molbev/msy096 KUMAR, V.; SINGH, S.; MANHAS, A.; SINGH, J.; SINGLA, S.; KAUR, P.; DATA, S.; NEGI, P.; KALIA, A. Bioremediation of Petroleum hydrocarbon by using Pseudomonas species isolated from Petroleum contaminated soil. Oriental Journal of Chemistry, v. 30, n. 4, 2014. DOI: 10.13005/ojc/300436 KUMARI, B.; SINGH, S. N.; SINGH, D. P. Characterization of two biosurfactant producing strains in crude oil degradation. Process Biochemistry, v. 47, n. 12, p. 2463-2471, 2012. DOI: 10.1016/j.procbio.2012.10.010 KUMARI, S.; REGAR, R.K; MANICKAM, N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresource technology, v. 254, p. 174-179, 2018. DOI: 10.1016/j.biortech.2018.01.075 KUN, WEI.; HUA, YIN.; HUI, P.; GUINING, L.; ZHI, D. Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygenase, Science of The Total Environment, v. 627, p. 1389-1395, 2018. DOI: 10.1016/j.scitotenv.2018.02.028 KUREEL, M. K.; GEED, S. R.; RAI, B. N.; SINGH, R. S. Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by isolated Bacillus sp. M4 and proteomic study. Bioresource technology, v. 266, p. 335-342, 2018. DOI: 10.1016/j.biortech.2018.06.064 KURNIATI, E.; ARFARITA, N.; IMAI, T.; HIGUCHI, T.; KANNO, A.; YAMAMOTO, K.; SEKINE, M. Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. Journal of Environmental Sciences, v. 26, n. 6, p. 1223–1231, 2014. DOI: 10.1016/S1001-0742(13)60592-6 202 KUWAHARA, M.; GLENN, J. K.; MORGAN, M. A.; GOLO, M. H. Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic culture of Phanerochaete chrysosporium. FEBS Letters, v. 169, n. 2, p. 247-250, 1984. DOI: 10.1016/0014-5793(84)80327-0 LAEMMLI, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, v.227, p.680-685, 1970. DOI: 10.1038/227680a0 LAURELL, A.; SICOTTE, P. Composição e processo para o tratamento de um material contaminado com hidrocarbonetos.Brazil Patent BR9917122A. 1998. LAWAL, A. T. Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science, v. 3, n. 1, p. 1339841, 2017. DOI: 10.1080/23311843.2017.1339841 LEE, N. R.; HWANG, M. O.; JUNG, G. H.; KIM, Y. S.; MIN, K. H. Physical structure and expression of alkBA encoding Alkane Hydroxylase and Rubredoxin Reductase from Pseudomonas maltophilia. Biochemical and Biophysical Research Communications, v. 218, n.1, p.17-21,1996. DOI: 10.1006/bbrc.1996.0004 LEITÃO, A. Potential of Penicillium species in the bioremediation field. International Journal of Environmental Research and Public Health, v. 6: p. 1393-417, 2009. DOI: 10.3390/ijerph6041393 LI, C.; ZHAO, X.; WANG, A.; HUBER, G.W.; ZHANG, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chemical Reviews, v. 115, n. 21, p.11559-11624, 2015. DOI: 10.1021/acs.chemrev.5b00155 LI, J.; CHEN, W.; ZHOU, W.; WANG, Y.; DENG, M.; ZHOU, S. Synergistic degradation of pyrene by Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 with sodium citrate as the co-metabolic carbon source. Ecotoxicology, v. 30, n. 7, p. 1487-1498, 2021. DOI: 10.1007/s10646-020-02268-3 LI, Q.; LIU, J.; GADD, G.M. Fungal bioremediation of soil co-contaminated with petroleum hydrocarbons and toxic metals. Appl Microbiol Biotechnol v.104, n. 21, p. 8999-9008, 2020. DOI: 10.1007/s00253-020-10854-y LI, T.; TANG, J.; KARUPPIAH, V.; LI, Y.; XU, N.; CHEN, J. Co-culture of Trichoderma atroviride SG3403 and Bacillus subtilis 22 improves the production of antifungal secondary metabolites. Biologic Control v. 140, n.104122, p. 1-8, 2020. DOI: 10.1016/j.biocontrol.2019.104122 LI, X.; HE, W.; DU, M.; ZHENG, J.; DU, X.; LI, Y. 2021. Design of a microbial remediation inoculation program for petroleum hydrocarbon contaminated sites based on degradation pathways. Int J Environ Res Public Health v. 18, n. 8794, 2021. DOI: 10.3390/ijerph18168794 LIMA, D.F.; DE OLIVEIRA, O.M.C.; GERIS, R.M.S.; TRIGÜIS, J.A.; QUEIROZ, A.F.S.; CRUZ, M.J.M.; BARRETO, I. S. Isolation and selection of fungi for degrading saturated 203 hydrocarbons, aromatic hydrocarbons and NSO compounds. Open J Yangtze Oil Gas v. 2, n. 1, p.10-26. 2017. DOI: 10.4236/ojogas.2017.21002 LIMA, D.F.; DE OLIVEIRA, O.M.C.; QUEIROZ, A.F.S.; OLIVEIRA, E.J.F.; DANTAS, C.P.; DE MENEZES-NETO, A.A.; PINCHEMEL, J.P.D. Consórcio microbiano misto degradador de óleos parafínicos da bacia do Recôncavo-Bahia-Brasil. Holder: Universidade Federal da Bahia. Patente BR 10 2021 002341 4. 2021. LIMA, D.F.; DE SOUZA QUEIROS, A.F.; DANTAS, C.P.; PALMEIRA, J.B.A.; COSTA, C.R.; DE OLIVEIRA, O.M.C. The Small-Scale Microbial Processes for Remediation of Sediments Contaminated with Hydrocarbons. In: KUMAR, V.; KUMAR, M.; PRASAD, R.(ed) Microbial Action on Hydrocarbons. Springer, Singapore, 255-297, 2018. DOI: 10.1007/978-981-13-1840- 5_11 LIMA, J. M. S. Avaliação do potencial de produção de biossurfactantes por microorganismos endofíticos e epifíticos de macrófitas aquáticas coletadas em afluentes do Rio Negro contaminados por petróleo. 2016. 119 f. Tese (Doutorado em Biodiversidade e Biotecnologia) - Universidade Federal do Amazonas. 2016. < http://tede.ufam.edu.br/handle/tede/5326> LIMA, J. M. S.; PEREIRA, J. O.; BATISTA, I. H.; NETO, P. D. Q. C.; DOS SANTOS, J. C.; DE ARAÚJO, S. P.; DE AZEVEDO, J. L. Potential biosurfactant producing endophytic and epiphytic fungi, isolated from macrophytes in the Negro River in Manaus, Amazonas, Brazil. African Journal of Biotechnology, v. 15, n. 24, p. 1217-1223, 2016. DOI:10.5897/AJB2015.15131 LIN, J.E.; CHANG, D.C.; SHEN, G.J.; WANG, H.Y. Correlations among several screening methods used for identifying wood-decay fungi that can degrade toxic chemicals. Biotechnology Techniques, v. 5, n. 4, p. 275-280, 1991. LIU, S.; GUO, C.; DANG, Z.; LIANG, X. Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B. Ecotoxicology and environmental safety, v. 137, p. 256-264, 2017. DOI:10.1016/j.ecoenv.2016.12.015 LIU, X.; MA, Q.; YANG, X. Study on Consistency of Diagnostic Ratios of Different Oils. Aquatic Procedia, v. 3, p. 231–237, 2015. DOI: 10.1016/j.aqpro.2015.02.216 LUCARINI, A.C.; SILVA, L.A da; BIANCHI, R.A.C. Um sistema para a contagem semiautomática de microorganismos. Revista pesquisa e tecnologia FEI, n. 26, p. 36-40, 2004. LUCCHESE, A. M.; DE MATTOS, M. C.; FONSECA, T DE S.; DE LEMOS, T. L. G.; CARVALHO, A. C. L. DE M.; DE OLIVEIRA, M. da C. C. F. Biocatálise e Biotransformação: Fundamentos e Aplicações. 3° serie. Salto: Editora Schoba. 2012. ASIN: B06XCYZ3FN LUCENA-AGUILAR, G.; SÁNCHEZ-LÓPEZ, A.M.; BARBERÁN-ACEITUNO, C.; CARRILLO-ÁVILA, J.A.; LÓPEZ-GUERRERO, J.A.; AGUILAR-QUESADA, R. DNA Source 204 Selection for Downstream Applications Based on DNA Quality Indicators Analysis. Biopreserv Biobank v. 14, p. 264-270, 2016. DOI: 10.1089/bio.2015.0064 LUO, J.; DENG, J.; CUI, L.; CHANG, P.; DAI, X.; YANG, C.; ZHANG, X. The potential assessment of green alga Chlamydomonas reinhardtii CC-503 in the biodegradation of benz (a) anthracene and the related mechanism analysis. Chemosphere, v. 249, p. 126097, 2020. DOI: 10.1016/j.chemosphere.2020.126097 M’BAREK, H.N.; TAIDI, B.; SMAOUI, T.; BEN AZIZ, M.; MANSOURI, A.; HAJJAJ, H. Isolation, screening and identification of ligno-cellulolytic fungi from northern central Morocco. Biotechnologie, Agronomie, Société et Environnement, v. 23, p. 207–217, 2019. DOI: 10.25518/1780-4507.18182 MAAMAR, A.; LUCCHESI, M. E.; DEBAETS, S.; NGUYEN VAN LONG, N.; QUEMENER, M.; COTON, E.; MATALLAH-BOUTIBA, A. Highlighting the crude oil bioremediation potential of marine fungi isolated from the Port of Oran (Algeria). Diversity, v. 12, n. 5, p. 196, 2020. DOI:10.3390/d12050196 MACCHI, M.; FESTA, S.; NIETO, E.; IRAZOQUI, J. M.; VEGA-VELA, N. E.; JUNCA, H.; COPPOTELLI, B. M. Design and evaluation of synthetic bacterial consortia for optimized phenanthrene degradation through the integration of genomics and shotgun proteomics. Biotechnology Reports, v. 29, p. e00588, 2021. DOI: 10.1016/j.btre.2021.e00588 MACEDO, M.M. Fundamentos das políticas de inovação pelo lado da demanda no Brasil.In: RAUEN, A.T. Políticas de inovação pelo lado da demanda no Brasil. Brasília: Ipea. 2017, pp.48. < https://www.ipea.gov.br/portal/index.php?option=com_content&view=article&id=30404> MACHÍN-RAMÍREZ, C.; MORALES, D.; MARTÍNEZ-MORALES, F.; OKOH, A. I.; TREJOHERNÁNDEZ, M. R. Benzo [a] pyrene removal by axenic-and co-cultures of some bacterial and fungal strains. International Biodeterioration & Biodegradation, v. 64, n. 7, p. 538-544, 2010. DOI: 10.1016/j.ibiod.2010.05.006 MACIEL, C.D.C.S.; DE SOUZA, M.A.; DE GUSMÃO, N.B.; DE CAMPOS-TAKAKI, G.M. Produção de enzimas do sistema lignolítico por fungos filamentosos isolados de locais impactados por petroderivados. Exacta v. 8, n. 3, p. 299-305, 2010. DOI: 10.5585/exacta.v8i3.2269 MACIEL, M.J.M.; RIBEIRO, H.C.T. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: A review. Electronic Journal of Biotechnology, v. 13, n. 6, p. 14-15, 2010. DOI: 10.2225/vol13-issue6-fulltext-2 MAGALHÃES, K. M.; CARREIRA, R. S.; ROSA FILHO, J. S.; ROCHA, P. P.; SANTANA, F. M.; YOGUI, G. T. Polycyclic aromatic hydrocarbons (PAHs) in fishery resources affected by the 2019 oil spill in Brazil: Short-term environmental health and seafood safety. Marine Pollution Bulletin, v. 175, p. 113334, 2022. DOI: 10.1016/j.marpolbul.2022.113334 205 MALLICK, I.; HOSSAIN, T.; SINHA, S.; KUMAR, M.S. Brevibacillus sp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere. Ecotoxicology and Environmental Safety, v. 107, 2014, p. 236-244, 2014. DOI: 10.1016/j.ecoenv.2014.06.007 MANN, J.; MARKHAM, J.L.; PEIRIS, P.; NAIR, N.; SPOONER-HART, R.N.; HOLFORD, P. Screening and selection of fungi for bioremediation of olive mill wastewater. World J Microbiol Biotechnol v. 26, n. 3, p. 567-571, 2010. DOI: 10.1007/s11274-009-0200-6 MAO, X.; JIANG, R.; XIAO, W.; YU, J. Use of surfactants for the remediation of contaminated soils: A review. Journal of Hazardous Materials, v. 285, p. 419–435, 2015. DOI: 10.1016/j.jhazmat.2014.12.009 MARCHUT-MIKOLAJCZYK, O.; KWAPISZ, E.; WIECZOREK, D.; ANTCZAK, T. Biodegradation of diesel oil hydrocarbons enhanced with Mucor circinelloides enzyme preparation. International Biodeterioration & Biodegradation. v. 104, p. 142–148, 2015. DOI: 10.1016/j.ibiod.2015.05.008 MARTINS, C.; MARTINS, I.; MARTINS, T.; VARELA, A.; PEREIRA, C. S. A Learning Journey on Toxico-Proteomics: The Neglected Role of Filamentous Fungi in the Environmental Mitigation of Pentachlorophenol. In: Tomasini, A.; León-Santiesteban, H. H. Fungal Bioremediation, CRC: Press, 2019, pp. 287-318. DOI: 10.1201/9781315205984 MAZZIOTTI, M.; HENRY, S.; LAVAL-GILLY, P.; BONNEFOY, A.; FALLA, J. Comparison of two bacterial DNA extraction methods from non-polluted and polluted soils. Folia Microbiology v. 63, p. 85-92, 2018. DOI: 10.1007/s12223-017-0530-y M'BAREK, H.N.; TAIDI, B.; SMAOUI, T.; AZIZ, M.B.; MANSOURI, A.; HAJJAJ, H. Isolation, screening and identification of ligno-cellulolytic fungi from northern central Morocco. Biotechnology, Agronomy and Society and Environment, v. 23, n. 4, p. 207-217, 2019. DOI: 10.25518/1780-4507.18182 MECKENSTOCK, R. U.; MORASCH, B.; GRIEBLER, C.; RICHNOW, H. H. Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. Journal of Contaminant Hydrology, v. 75, n. 3-4, p. 215-255, 2004. DOI: 10.1016/j.jconhyd.2004.06.003 MEDIĆ, A.; STOJANOVIĆ, K.; IZRAEL-ŽIVKOVIĆ, L.; BEŠKOSKI, V.; LONČAREVIĆ, B.; KAZAZIĆ, S.; KARADŽIĆ, I.A comprehensive study of conditions of the biodegradation of a plastic additive 2, 6-di-tert-butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai. RSC advances, v. 9, n. 41, p. 23696-23710, 2019. DOI:10.1039/c9ra04298a MEDIĆ, A.; STOJANOVIĆ, K.; IZRAEL-ŽIVKOVIĆ, L.; BEŠKOSKI, V.; LONČAREVIĆ, B.; KAZAZIĆ, S.; KARADŽIĆ, I. A comprehensive study of conditions of the biodegradation of a plastic additive 2, 6-di-tert-butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa san ai. RSC advances, v. 9, n. 41, p. 23696-23710, 2019. DOI: 10.1039/C9RA04298A 206 MENEZES, C.; SANTOS, S.; BORTOLI, R. Mapeamento de tecnologias ambientais: um estudo sobre patentes verdes no Brasil. Revista de Gestão Ambiental e Sustentabilidade: GeAS, v. 5, n. 1, p. 110-127, 2016. DOI: 10.5585/geas.v5i1.369 MENTEN, J.O.M.; MINUSSI, C.C.; CASTRO, C.; KIMATI, H. Efeito de alguns fungicidas no crescimento micelial de Macrophomina phaseolina in vitro. Fitopatologia Brasileira, v. 1, n. 2, p. 57-66, 1976. MERRIL, C. R. [36] Gel-staining techniques. Methods in enzymology, v. 182, p. 477-488, 1990. DOI: 10.1016/0076-6879(90)82038-4 MITRA, A. Biology, Genetic Aspects, and Oxidative Stress Response of Streptomyces and Strategies for Bioremediation of Toxic Metals. In: Das, S. (Ed) Microbial Biodegradation and Bioremediation. Elsevier, 2014. p. 287-299. DOI: 10.1016/B978-0-12-800021-2.00012-1 MODE, A.W.; ANYIAM, O.A.; AMOBI, J.O.; NWEKE, S.U. Gas chromatographic analysis of whole oil samples: implications for biodegradation in the Niger Delta. J. Petrol. Journal of Petroleum Exploration and Production Technology, v. 7, n. 89, 2017. DOI: 10.1007/s13202- 016-0287-x MOHAPATRA, B.; PHALE, P.S. Microbial degradation of naphthalene and substituted naphthalenes: Metabolic diversity and genomic insight for bioremediation. Frontiers in Bioengineering and Biotechnology, v. 9, p. 144, 2021. DOI: 10.3389/fbioe.2021.602445 MOHSIN, U.; LOWRY, M.; DEVI, P.; DIXIT, H.; THAKUR, S. Evaluation of Antibiotic Resistant and Metal Tolerances Capability of Petroleum (hydrocarbon) Degrading Bacteria. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2022. p. 012022 DOI: 10.1088/1757-899X/1224/1/012022 MONGEON, P.; PAUL-HUS, A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics. v.106, p. 213-228, 2015. DOI: 10.1007/s11192-015-1765- 5 MONTEIRO, V.N.; DO NASCIMENTO, S.R. Industrial applications of enzymatic biotechnology. Revista processos químicos v.3, n. 5, p. 9-23, 2009. ISSN 1981-8521 MORAES, S. L.; TEIXEIRA, C. E.; MAXIMINIANO, A. M. S. Gerenciamento de áreas contaminadas. 1 ed. São Paulo: IPT e BNDES, 398 p. 2014. ISBN 978-85-09-00179-7 MORAIS, C. S.; OLIVEIRA JUNIOR, F. O. R.; MASSON, G.; REBELLO, K. M.; SANTOS, L. O.; BASTOS, N. F. P.; FARIA, R. C. R. Série em biologia celular e molecular: métodos experimentais no estudo de proteínas. Rio de Janeiro: IOC, 2013. 84 p. v. 1. ISBN 978-85-99974- 04-9 MOREIRA, I.T.A.; OLIVEIRA, O.M.C DE; QUEIROZ, A.F.S.; TRIGUIS, J.A. Bioremediation system for degradation of petroleum-derived hydrocarbons in sediments and soils. Brazil Patent BR102012033515A2, 2016. 207 MORÓN-RÍOS, A.; GÓMEZ-CORNELIO, S.; ORTEGA-MORALES, B.O.; DE LA ROSAGARCÍA, S.; PARTIDA-MARTÍNEZ, L.P.; QUINTANA, P.; GONZÁLEZ-GÓMEZ, S. Interactions between abundant fungal species influence the fungal community assemblage on limestone. PloS one v. 12, n.12, p. 0188443, 2017. DOI: journal.pone.0188443 MOSER, L.E.; GRAY, N.C.C. Soil decontamination process containing DDT contaminants. Brazil Patent PI 9611268-9 A2. 1999. MOSTERTZ, J.; HOCHGRÄFE, F.; JÜRGEN, B.; SCHWEDER, T.; HECKER, M. The role of thioredoxin TrxA in Bacillus subtilis: a proteomics and transcriptomics approach. Proteomics, v. 8, n. 13, p. 2676-2690, 2008. DOI: 10.1002/pmic.200701015 MOUAFI, F.E.; ABO ELSOUD, M.M.; MOHARAM, M.E. Optimization of biosurfactant production by Bacillus brevis using response surface methodology. Biotechnol Reports v. 9, p. 31–37, 2016. DOI: 10.1016/j.btre.2015.12.003 MOUHAMADOU, BELLO; FAURE, MATHIEU; SAGE, LUCILE; MARÇAIS, JOHANNA; SOUARD, FLORENCE; GEREMIA, ROBERTO A. Potential of autochthonous fungal strains isolated from contaminated soils for degradation of polychlorinated biphenyls. Fungal Biology, v. 117, n. 4, p. 268–274, 2013. DOI: 10.1016/j.funbio.2013.02.004 MOURA, A.M.M.D.; CAREGNATO, S.E. Produção científica dos pesquisadores brasileiros que depositaram patentes na área da biotecnologia, no período de 2001 a 2005: colaboração interinstitucional e interpessoal. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação. Florianópolis, Revista Eletrônica de Biblioteconomia e Ciência da Informação Florianópolis, v. 15, n. 29, p. 84-105, 2010. DOI 10.5007/1518- 2924.2010v15n29p84 MUKHERJEE, P.; ROY, P. Genomic Potential of Stenotrophomonas maltophilia in Bioremediation with an Assessment of Its Multifaceted Role in Our Environment. Front. Microbiol. v. 7, n. 967, 2016. DOI: 10.3389/fmicb.2016.00967 MUTHUKAMALAM, S.; SIVAGANGAVATHI, S.; DHRISHYA, D.; SUDHA RANI, S. Characterization of dioxygenases and biosurfactants produced by crude oil degrading soil bacteria. Brazilian Journal of Microbiology, v. 48, n. 4, p. 637-647, 2017. DOI: 10.1016/j.bjm.2017.02.007 NATHAN, V.K.; KANTHIMATHINATHAN, S.R.; RANI, M.E.; RATHINASAMY, G.; KANNAN, N.D. Biobleaching of waste paper using lignolytic enzyme from Fusarium equiseti VKF2: a mangrove isolate. Cellulose v. 25, n. 7, p. 4179-4192, 2018. DOI: 10.1007/s10570-018- 1834-z NATRAH, F.M.; BOSSIER, P.; SORGELOOS, P.; YUSOFF, F.M.; DEFOIRDT, T. Significance of microalgal–bacterial interactions for aquaculture. Reviews in Aquaculture, v. 6, n. 1, p. 48- 61, 2014. DOI: 10.1111/raq.12024 NCBI - National Center for Biotechnology Information. BLAST. Disponível em: <http://blast.ncbi.nlm.nih.gov/Blast.cgi>. Acesso em: jun 2021 208 NC-IUBMB - Nomenclature Committee of the International Union of Biochemistry and Molecular Biology. Enzyme Nomenclature. Disponível em: < http://www.chem.qmul.ac.uk/iubmb/enzyme/>. Acesso em: ago 2017. NEJLA HECHMI; BOSSO, L.; EL-BASSI, L.; SCELZA, R.; TESTA, A.; JEDIDI, N.; RAO, M. A. Depletion of pentachlorophenol in soil microcosms with Byssochlamys nivea and Scopulariopsis brumptii as detoxification agents, Chemosphere, v. 165, p. 547-554, 2016. DOI: 10.1016/j.chemosphere.2016.09.062 NELSON, D. R. The cytochrome P450 homepage. Human Genomics, v. 4, p. 59–65, 2009. DOI: 10.1186/1479-7364-4-1-59 NIELSEN, C.U; BRODIN, B; STEFFANSEN, B. Efflux transporters. Molecular Biopharmaceutics, p. 213, 2010. ISBN 978 0 85369 722 0 NIELSEN, K.F.; MOGENSEN, J.M.; JOHANSEN, M.; LARSEN, T.O.; FRISVAD, J.C. Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and Bioanalytical Chemistry, v. 395, n. 5, p. 1225-1242, 2009. DOI: 10.1007/s00216-009-3081-5 NIEVAS, M. L.; COMMENDATORE, M. G.; ESTEVES, J. L.; BUCALÁ, V. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. Journal of hazardous materials, v. 154, n. 1-3, p. 96-104, 2008. DOI:10.1016/j.jhazmat.2007.09.112 NIGAM, V.K.; SHUKLA, P. Enzyme based biosensors for detection of environmental pollutants-A review. Journal of Microbiology and Biotechnology, v. 25, n. 11, p. 1773-1781, 2015. DOI: 10.4014/jmb.1504.04010 NORGEN BIOTEC CORP. Fungi/Yeast Genomic DNA Isolation Kit Protocol. 2014. Disponível em:< https://norgenbiotek.com/sites/default/files/resources/Fungi-Yeast-Isolation-KitInsert-PI27300-9-M14.pdf > Acesso em: jan 2019 O’FARRELL, P. H. High Resolution Two-Dimensional Electrophoresis of Protein. The Journal of Biological Chemistry, v. 250, n. 10, p. 4007-4021, 1975. PMID: 236308 OBAYORI, O. S.; ILORI, M. O.; ADEBUSOYE, S. A.; OYETIBO, G. O.; OMOTAYO, A. E.; AMUND, O. O. Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World Journal of Microbiology and Biotechnology, v. 25, n. 9, p. 1615-1623, 2009. DOI:10.1007/s11274-009-0053-z OGOLA, H.J.O.; ASHIDA, H.; ISHIKAWA, T.; SAWA, Y. Explorations and applications of enzyme-linked bioremediation of synthetic dyes. In: SHIOMI, N. Advances in Bioremediation of Wastewater and Polluted Soil, p. 111-144, 2015. DOI: 10.5772/60753 OMRANI, R.; SPINI, G.; PUGLISI, E.; SAIDANE, D. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation. Biodegradation 29:187–209, 2018. DOI: 10.1007/s10532-018-9823-3 209 ONTAÑON, O. M.; LANDI, C.; CARLEO, A.; GAGLIARDI, A.; BIANCHI, L.; GONZÁLEZ, P. S.; BINI, L. What makes A. guillouiae SFC 500-1A able to co-metabolize phenol and Cr (VI)? A proteomic approach. Journal of hazardous materials, v. 354, p. 215-224, 2018. DOI: 10.1016/j.jhazmat.2018.04.068 ORCID - Open Researcher and Contributor ID. Disponível em: <https://orcid.org/>. Acessado em: maio 2020. OVERTON, E. B.; MCFALL, J. A.; MASCARELLA, S.W.; STEELE, C.F.; ANTOINE S.A.; POLITZER IR, LASETER JL. Identification of petroleum sources after a fire and oil spill. In:International Oil Spill Conference Proceedings, 1981. Proceedings. v. 1981, n. 1, p. 541-546, 1981. PACHECO, C.A. The financing of private sector R&D spending in Brazil and the profile of government incentives for R&D. São Paulo: Revista USP, 2011, pp 89. PACWA-PLOCINICZAK, M.; PLAZA, G. A.; POLIWODA, A.; PIOTROWSKA-SEGET, Z. Characterization of hydrocarbon-degrading and biosurfactant-producing Pseudomonas sp. P-1 strain as a potential tool for bioremediation of petroleum-contaminated soil. Environmental Science and Pollution Research, v. 21, p. 9385-9395, 2014. DOI: 10.1007/s11356-014-2872-1 PADILHA, T. DE M.; SAMPAIO, J.; LONGONI, L.; BENEDUZI, A. Isolamento de linhagens bacterianas degradadoras de hidrocarbonetos BTEX proveniente do setor petroquímico. Sci Plena v. 13, n. 9, 2017. DOI: 10.14808/sci.plena.2017.096201 PAL, S.; KUNDU, A.; BANERJEE, T.D.; MOHAPATRA, B.; ROY, A.; MANNA, R.; SAR, P.; KAZY, S.K. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics. 2017. DOI: 10.1016/j.ygeno.2017.06.002 PALUDO, G.B.; DE ABREU-LIMA, T.L.; CARREIRO, S.C. Potencial enzimático de leveduras isoladas de folhas em decomposição. Acta Tecnológica v. 13, n. 2, p. 65-77, 2019. DOI: 10.35818/acta.v13i2.666 PANDA, S.; SHARMA, R.; PARK, W.G. Patent protection, technological efforts, and exports: An empirical investigation. Journal of Developing Areas, v. 54, n. 2, p. 144-162, 2020. DOI: 10.1353/jda.2020.0021 PARAB, V.; PHADKE, M. Co-biodegradation studies of naphthalene and phenanthrene using bacterial consortium. Journal of Environmental Science and Health, Part A, v. 55, n. 7, p. 912-924, 2020. DOI: 10.1080/10934529.2020.1754054 PARANHOS, R.D.C.S.; RIBEIRO, N.M. Importância da prospecção tecnológica baseada em patentes e seus objetivos de busca. Cadernos de Prospecção v. 11, n. 5, p. 1274, 2018. DOI:10.9771/cp.v12i5.28190 210 PARK, SANG-HO; OH, KYE-HEON; KIM, CHI-KYUNG. Adaptive and cross-protective responses of Pseudomonas sp. DJ-12 to several aromatics and other stress shocks. Current microbiology, v. 43, n. 3, p. 176-181, 2001. DOI: 10.1007/s002840010283 PATEL, A. K.; SINGHANIA, R. R.; PANDEY, A. Production, purification, and application of microbial enzymes. In: Brahmachari, G. Biotechnology of Microbial Enzymes. Academic Press. 2017, pp. 13-41. DOI: 10.1016/B978-0-12-803725-6.00002-9 PATEL, J. G.; KUMAR, J. N.; KUMAR, R. N.; KHAN, S. R. Biodegradation capability and enzymatic variation of potentially hazardous polycyclic aromatic hydrocarbons—anthracene and pyrene by Anabaena fertilissima. Polycyclic Aromatic Compounds, v. 36, n. 1, p. 72-87, 2016. DOI: 10.1080/10406638.2015.1039656 PATEL, K.; PATEL, M. Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. Bioresource Technology, 2020. DOI:10.1016/j.biortech.2020.123861 PATEL, K.; PATEL, M. Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. Bioresource Technology, 2020. DOI: 10.1016/j.biortech.2020.123861 PBD-101. PROTEIN DATA BANK. Guide to Understanding PDB Data. Molecular Graphics Programs. Disponível em: < http://pdb101.rcsb.org/learn/guide-to-understanding-pdbdata/molecular-graphics-programs > Acesso em: ago 2017. PEIXOTO, R. S.; VERMELHO, A. B.; ROSADO, A. S. Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Research, v. 1, p 1-7, 2011. DOI: 10.4061/2011/475193 PENG, T.; LUO, A.; KAN, J.; LIANG, L.; HUANG, T.; HU, Z. Identification of a ringhydroxylating dioxygenases capable of anthracene and benz [a] anthracene oxidization from Rhodococcus sp. P14. Microbial Physiology, v. 28, n. 4, p. 183-189, 2018. DOI: 10.1159/000494384 PEREIRA J.R., N; GOMES, E. DE B.; SORIANO; A. U. Biodegradação de hidrocarbonetos. 1ª Ed. Rio de Janeiro: Escola de Química. v.3. 2009. 76p. ISSN 0103-7374 PEREIRA, L.A.A.; ROBERTO, L.S. Biorremediação enzimática de origem natural com ampla aplicabilidade, sendo o substrato um meio constituído por extratos de fontes vegetais oliginosas adicionados a uma mistura de isômeros. Brazil Patent BR 11 2013 000948 9 A2. 2010. PEREIRA, M.C.; BERTELLI, M.A.; ALEXANDRE-JUNIOR, W.R. Processo de biorremediação de hidrocarbonetos, xilol, tolueno, naftaleno, acenaftileno, acenafteno, fluoreno por uma formulação personalizada a partir de enzimas e tensoativos. Brazil Patent BRPI1106049A2. 2011. 211 PÉREZ-LLANO, Y.; MARTÍNEZ-ÁVILA, L.; BATISTA-GARCÍA, R. A. Omics Approaches: Impact on Bioremediation Techniques. In: PRASAD, R.; ARANDA, E. (Eds). Approaches in Bioremediation, Springer: Cham. 2018, pp. 43-59. DOI: 10.1007/978-3-030-02369-0_3 PETERS, K.E.; MOLDOWAN, J.M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. New Jersey, Prentice-Hall Inc. 1993. ISBN-13 : 978- 0130867520 PINSKI, A.; ZUR, J.; HASTEROK, R.; HUPERT-KOCUREK, K. Comparative genomics of stenotrophomonas maltophilia and stenotrophomonas rhizophila revealed characteristic features of both species. International Journal of Molecular Sciences, v. 21, p. 1–20, 2020. DOI: 10.3390/ijms21144922 PIRES, G.B.P.; VASCONSELOS, P.G.; AMBROZIM, F.M.; PINHEIRO, I.R. Estudo comparativo de produção de celulases variando-se as condições de cultivo na fermentação em estado sólido. Brazilian Journal of Development, v. 6, n. 11, p. 93305-93315, 2020. DOI: 10.34117/bjdv6n11-662 PITCHAIRAMU, C.; VENKATESAN, S.; MUTHUCHELIAN, K. Litter Fungi Diversity in Piranmalai Forest, Eastern Ghats, Tamilnadu, India. Ethnobotanical Leaflets, v. 12, p. 1–7, 2008. PIUBELI, F.A. Caracterização da comunidade microbiana em ambientes salinos e suas possíveis aplicações biotecnológicas. 2011. 240 f. Tese (Doutorado em Ciência de Alimentos) - Universidade Estadual de Campinas, SP. 2011. POLITZER, K.; BON, E.D.S. Enzimas Industriais e Especiais. Centro de Gestão e Estudos Estratégicos, Ciência, Tecnologia e Inovação Rio de Janeiro. 2006. pp. 580. PRASAD, B.; SURESH, S. Biodegradation of dimethyl phthalate ester using free cells, entrapped cells of Variovorax sp. BS1 and cell free enzyme extracts: a comparative study. International Biodeterioration & Biodegradation. v. 97, p. 179–187, 2015. DOI: 10.1016/j.ibiod.2014.11.004 PRENAFETA-BOLDÚ, F.X.; DE HOOG, G.S.; SUMMERBELL, R.C. Fungal Communities in Hydrocarbon Degradation. Microb Communities Util Hydrocarb Lipids Members, Metagenomics Ecophysiol, p. 1–36, 2019. DOI: 10.1007/978-3-319-60063-5_8-1 PRICE, M.F.; WILKINSON, I.D.; GENTRY, L.O. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia: Journal of Medical and Veterinary Mycology v. 20, n. 1, p. 7-14, 1982. DOI: 10.1080/00362178285380031 PRIMER SEQUENCES. Disponível em:<https://nature.berkeley.edu/brunslab/tour/ primers.html#18s> Acessado em: jul 2018. Promega Corporation. 2017. Measuring dsDNA Concentration Using the Quantus® Fluorometer with the QuantiFluor® dsDNA System. Disponível em:<https://www.promega.com.br/products/fluorometers-luminometers-multimodereaders/fluorometers/quantus-fluorometer/?catNum=E6150> Acessado em: Jul 2018 212 PROMEGA. Maxwell® 16 LEV simplyRNA Cells Kit and Maxwell® 16 LEV simplyRNA Tissue Kit. Quick PROTOCOL. 2011-2014. Disponível em:< https://www.promega.com.br/resources/protocols/technical-manuals/101/maxwell-16-levsimplyrna-cells-kit-and-maxwell-16-lev-simplyrna-tissue-kit-protocol/> Acesso em: abril 2019 PUBCHEN. Explore Chemistry - Quickly find chemical information from authoritative sources. Disponível em:<https://pubchem.ncbi.nlm.nih.gov/> Acesso em: Jul 2021. PUENTES-TÉLLEZ, P.E.; FALCAO, S. J. Construction of Effective Minimal Active Microbial Consortia for Lignocellulose Degradation. Microb Ecol v. 76, p. 419–429, 2018. DOI: 10.1007/s00248-017-1141-5 PUGAZHENDI, ARULAZHAGAN PUGAZHENDI, HUDA QARI, JALAL MOHAMMAD AL-BADRY BASAHI, JEAN JACQUES GODON, JEYAKUMAR DHAVAMANI. Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions, International Biodeterioration & Biodegradation, v. 121, p.44-54, 2017. DOI: 10.1016/j.ibiod.2017.03.015 QUEIROZ, C.; DE SOUZA, A.C.B. Produção de enzimas hidrolíticas por fungos filamentosos em diferentes substratos sólidos. Brazilian Journal of Development, v. 6, n. 7, p. 51849-51860, 2020. DOI: 10.34117/bjdv6n7-725 QUINTELLA, C.M.A.L.T.M.H.; GONCALVES, O. Process for obtaining biodegradable products for application in the remediation of soils, waters and impacted environments and method of operation. Brazil patent BRPI1004444A2. 2012. R CORE TEAM. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Disponível em:< https://www.R-project.org>. Acesso em: nov 2021. RADWAN, G., T.S.; RUIZ, O.N. Draft genome sequence of Byssochlamys sp. isolate BYSS01, a filamentous fungus adapted to the fuel environment. Genome Announc v. 6, n. 10, 2018. DOI: 10.1128/genomeA.00164-18 RAGHUNANDAN, K.; KUMAR, A.; KUMAR, S.; PERMAUL, K.; SINGH, S. Production of gellan gum, an exopolysaccharide, from biodiesel-derived waste glycerol by sphingomonas spp. 3Biotech v. 8, n.71, 2018. DOI: 10.1007/s13205-018-1096-3 RAMAN, N.M.; ASOKAN, S.; SHOBANA SUNDARI, N.; RAMASAMY, S. Bioremediation of chromium (VI) by Stenotrophomonas maltophilia isolated from tannery effluent. International Journal of Environmental Science and Technology, v.15, p. 207–216, 2017. DOI: 10.1007/s13762-017-1378-z RAMOS, V. O.; SILVA, W. S.; JÚNIOR, W. R. A.; BERTELLI, M. A.; MENDES, R. J. Uso de Complexo Enzimático no Tratamento de Resíduos em Postos de Gasolina. XII Seminário Brasileiro de Tecnologia Enzimática. Caxias do Sul. 2016. Anais[...]. Disponível em: < https://www.ucs.br/site/eventos/enzitec-2016/anais/> 213 RAO, M.A.; SCELZA, R.; ACEVEDO, F.; DIEZ, M.C.; GIANFREDA, L. Enzymes as useful tools for environmental purposes. Chemosphere v. 107, p. 145-162, 2014. DOI: 10.1016/j.chemosphere.2013.12.059 RAPINI, M.S. Norma de financiamento para investimentos em inovação no Brasil. Belo Horizonte, Cedeplar. 2013. pp. 497. RATHER, L.J.; AKHTER, S.; HASSAN, Q.P. Bioremediation: green and sustainable technology for textile effluent treatment. In: MUTHU, S.S.(Ed). Sustainable innovations in textile chemistry and dyes. Springer: Singapore, p. 75-91, 2018. DOI: 10.1007/978-981-10-8600-7_4 REIS, N.S.; BRITO, A.R.; PACHECO, C.S.; COSTA, L.C.; GROSS, E.; SANTOS, T.P.; FRANCO, M. Improvement in menthol extraction of fresh leaves of Mentha arvensis by the application of multi-enzymatic extract of Aspergillus niger. Chemical Engineering Communications, v. 206, n. 3, p. 387-397, 2019. DOI: 10.1080/00986445.2018.1494580 REVELLE, W. Procedures for psychological, psychometric, and personality research. Software, R package version 2.1.9. 2021. REZENDE, E.D.F.; COUTO, F.A.; BORGES, J.G.; SILVA, D.M.D.; BATISTA, L.R. Potencial enzimático e toxigênico de fungos isolados de grãos de café. Coffe Science v. 8, n. 1, p. 69-77, 2013. RISER-ROBERTS, E. Remediation of Petroleum Contaminated Soil: Biological, Physical, and Chemical Processes, Lewis Publishers, Boca Raton, FL. 1998 ISBN-13: 978-0-367-40044-6 RODRIGUES, E. M. Prospecção de bactérias degradadoras de petróleo e avaliação de potenciais estratégias de biorremediação para a degradação de hidrocarbonetos na Ilha da Trindade. 2014. 89 f. Dissertação (Mestrado em microbiologia agrícola) - Universidade Federal de Viçosa, Viçosa, 2014. <http://locus.ufv.br/handle/123456789/5372> RODRIGUES, H. C.; CARVALHO, A. L.; SOUZA, C. O.; UMSZA-GUEZ, M. A. Evolution of World and Brazilian Markets for Enzymes Produced by Solid-state Fermentation: A Patent Analysis. Recent Patents on Biotechnology, v. 14, n. 2, p. 112-120, 2020. DOI: 10.2174/1872208313666191017143845 RODRIGUES, M. I.; IEMMA, A. F. Planejamento de experimentos e otimização de processos. Uma estratégia sequencial de planejamentos. 1ª. ed. Campinas, Brasil. Casa do Pão de Queijo, 2005. p. 326. RODRIGUES, P.; VENÂNCIO, A.; LIMA, N. Toxic reagents and expensive equipment: are they really necessary for the extraction of good quality fungal DNA?. Letters in Applied Microbiology, v. 66, p. 32-37, 2017. DOI: 10.1111/lam.12822 ROJO F. Degradation of alkanes by bacteria. Environmental Microbiology, v.11, n.10, p. 2477- 2490, 2009. DOI: 10.1111/j.1462-2920.2009.01948.x 214 ROMANELLI, A.M.; FU, J., HERRERA, M.L.; WICKES, B.L. A universal DNA extraction and PCR amplification method for fungal rDNA sequence‐ based identification Mycoses v. 57, p. 612-622, 2014. DOI: 10.1111/myc.12208 ROMEIRO, R. S. Métodos em bacteriologia de plantas. 1.ed. Viçosa: Editora. UFV. 2001. 279 p. v. 1. RON, E.Z.; ROSENBERG, E. Enhanced bioremediation of oil spills in the sea. Current Opinion in Biotechnology, v. 27, p. 191-194, 2014. DOI: 10.1016/j.copbio.2014.02.004 RUAS, T. L.; PEREIRA, L. Como construir indicadores de ciência, tecnologia e inovação usando Web of Science, Derwent World Patent Index, Bibexcel e Pajek. Perspectivas em Ciência da Informação.v. 19, p. 52-81, 2014. DOI: 10.1590/1981-5344/1678 SALDARRIAGA-HERNÁNDEZ, S.; VELASCO-AYALA, C.; FLORES, P.L.I.; DE JESÚS ROSTRO-ALANIS, M.; PARRA-SALDIVAR, R.; IQBAL, H.M.; CARRILLO-NIEVES, D. Biotransformation of lignocellulosic biomass into industrially relevant products with the aid of fungi-derived lignocellulolytic enzymes. Int J Biol Macromol v. 161, p. 1099-1116, 2020. DOI: 10.1016/j.ijbiomac.2020.06.047 SALEM, S.S.; MOHAMED, A.; EL-GAMAL, M.; TALAT, M.; FOUDA, A. Biological decolorization and degradation of azo dyes from textile wastewater effluent by Aspergillus niger. Egyptian Journal of Chemistry, v. 62, n. 10, p. 1799-1813, 2019. DOI: 10.21608/EJCHEM.2019.11720.1747 SAMA, S.G.; BARRÈRE-MANGOTE, C.; BOUYSSIÈRE, B.; GIUSTI, P.; LOBINSKI, R. Recent trends in element speciation analysis of crude oils and heavy petroleum fractions. Trends in Analytical Chemistry, v. 104, p. 69-76, 2018. DOI: 10.1016/j.trac.2017.10.014 SAMARAKOON, T.; WANG, S.Y; ALFORD, M.H. Enhancing PCR amplification of DNA from recalcitrant plant specimens using a trehalose-based additive. Applications in plant sciences, v. 1, n. 1, 2013. DOI: 10.3732/apps.1200236 SANDRIN, T.R.; MAIER, R.M. Impacto f metals on the biodegradation of organic pollutants. Environmental Health Perspectives, v.111, p. 1093-1105, 2003. DOI: 10.1289/ehp.5840 SANTOS, A. F. dos; GANDRA, R. M.; OLIVEIRA, S. S. C. de; KNEIPP, L. F.; D'AVILALEVY, C. M.; SODRÉ, C. L.; BRANQUINHA, M. H.; SANTOS, A. L. S. dos; Peptidases em biotecnologia: produção, aplicações e mercado. In: RESENDE, R. R. (Org) Biotecnologia Aplicada à Agro & Indústria: fundamentos e aplicações. São Paulo: Blucher, v. 4, p. 381-438, 2016. DOI: 10.5151/9788521211150-11 SANTOS, E. C. L. D.; MIRANDA, D. A. D. R.; SILVA, A. L. D. S.; LÓPEZ, A. M. Q. Biosurfactant Production by Bacillus strains isolated from sugar cane mill wastewaters. Brazilian Archives of Biology and Technology, v. 62, 2019. DOI:10.1590/1678-4324-2019170630 SARAVANAN, A.; KUMAR, P. S.; VO, D. V. N.; JEEVANANTHAM, S.; KARISHMA, S.; YAASHIKAA, P. R. A review on catalytic-enzyme degradation of toxic environmental 215 pollutants: Microbial enzymes. Journal of Hazardous Materials, v. 419, p. 126451, 2021. DOI: 10.1016/j.jhazmat.2021.126451 SCHAMFUß, S.; NEU, T. R.; VAN DER MEER, J. R.; TECON, R.; HARMS, H.; WICK, L. Y. Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environmental science & technology, v. 47, n. 13, p. 6908-6915, 2013. DOI: 10.1021/es304378d SCHNEIDER, W.D.H.; FONTANA, R.C.; MENDONÇA, S.; DE SIQUEIRA, F.G.; DILLON, A.J.P.; CAMASSOLA, M. High level production of laccases and peroxidases from the newly isolated white-rot basidiomycete Marasmiellus palmivorus VE111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources. Process Biochemistry, v. 69, p. 1-11, 2018. DOI: 10.1016/j.procbio.2018.03.005 SCHOCH, C.L.; SEIFERT, A.; HUHNDORF, S.; ROBERT, V.; SPOUGE, J.; CONSORTIUM, F.B. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, v. 109, n. 16, p. 6241- 6246. DOI: 10.1073/pnas.1117018109 SEMANA, P.; POWLOWSKI, J. Four aromatic intradiol ring cleavage dioxygenases from aspergillus niger. Applied and Environmental Microbiology Journal, v. 85, n. 23, p. e01786- 19, 2019. DOI: 10.1128/AEM.01786-19 SEO, JONG-SU; KEUM, YOUNG-SOO; LI, QING X. Bacterial degradation of aromatic compounds. International journal of environmental research and public health, v. 6, n. 1, p. 278-309, 2009. DOI: 10.3390/ijerph6010278 SHAH, S.; DAMARE, S. Cellular response of Brevibacterium casei# NIOSBA88 to arsenic and chromium—a proteomic approach. Brazilian Journal of Microbiology, v. 51, n. 4, p. 1885- 1895, 2020. DOI: 10.1007/s42770-020-00353-7 SHARMA, A.; MUTHUPRIYA, M.; RAJ, R.; SHAMEEN, Z.; SM, V.; NIYONZIMA, F.N.; MORE, S.S. Properties of Laccase of Bacillus marisflavi Strain BB4 and its Synthetic Dyes Decolorization Analysis. Proceedings of the National Academy of Sciences, India Section B, v. 91, p. 477–485, 2021. DOI: 10.1007/s40011-021-01235-0 SHARMA, B.; DANGI, A.K.; SHUKLA, P. Contemporary enzyme based technologies for bioremediation: a review. Journal of Environmental Management, v. 210, p. 10-22, 2018. DOI: 10.1016/j.jenvman.2017.12.075 SHARMA, B.; SHUKLA, P. Designing synthetic microbial communities for effectual bioremediation: A review. Biocatalysis and Biotransformation, v. 38, n. 6, p. 405-414, 2020. DOI: 10.1080/10242422.2020.1813727 SHARMA, P. Microbial communication during bioremediation of polyaromatic hydrocarbons. Systems Microbiology and Biomanufacturing, p. 1-15, 2022. DOI: 10.1007/s43393-021- 00072-6 216 SHARMA, S., P.; NGO, H. H.; KHANAL, S.; LARROCHE, C.; KIM, S. H.; PANDEY, A. Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: Sustainable technique for metal detoxification. Environmental Technology & Innovation, v. 23, p. 101725, 2021. DOI: 10.1016/j.eti.2021.101725 SHEELA, T.; SADASIVAM, S.K. Dye degradation potential and its degradative enzymes synthesis of bacillus cereus skb12 isolated from a textile industrial effluent. Journal of Applied Biology and Biotechnology, v. 8, p. 42–46, 2020. DOI: 10.7324/JABB.2020.80308 SHELP, B. J.; BOWN, A. W.; ZAREI, A. 4-Aminobutyrate (GABA): a metabolite and signal with practical significance. Botany, v. 95, n. 11, p. 1015-1032, 2017. DOI:10.1139/cjb-2017- 0135 SHI, J.; WU, Y.; ZHANG, S.; TIAN, Y.; YANG, D.; JIANG, Z. Bioinspired construction of multi-enzyme catalytic systems. Chemical Society Reviews, v. 47, n. 12, p. 4295-4313, 2018. DOI: 10.1039/C7CS00914C SHIN, W.; LEE, K.; PARK, G.T. When an Importer's Protection of IPR Interacts with an Exporter's Level of Technology: Comparing the Impacts on the Exports of the North and South. The World Economy, v. 39, n. 6, p. 772-802, 2016. DOI: 10.1111/twec.12338 SHUONA, C.; HUA, Y.; JINGJING, C.; HUI, P.; ZHI, D. Physiology and bioprocess of single cell of Stenotrophomonas maltophilia in bioremediation of co-existed benzo [a] pyrene and copper. Journal of hazardous materials, v. 321, p. 9-17, 2017. DOI: 10.1016/j.jhazmat.2016.09.002 SICILIANO, S. D.; FORTIN, N.; MIHOC, A.; WISSE, G.; LABELLE, S.; BEAUMIER, D.; GREER, C. W. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Applied and environmental microbiology, v. 67, n. 6, p. 2469-2475, 2001. DOI: 10.1128/AEM.67.6.2469-2475.2001 SIDWABA, U.; NTSHONGONTSHI, N.; FELENI, U.; WILSON, L.; WARYO, T.; IWUOHA, E.I. Manganese Peroxidase-Based Electro-Oxidation of Bisphenol A at Hydrogellic PolyanilineTitania Nanocomposite-Modified Glassy Carbon Electrode. Electrocatalysis , v. 10, n. 4, p. 323- 331, 2019. DOI: 10.1007/s12678-019-0510-x SILVA, A. S. da. Caracterização de enzimas bacterianas de degradação de hidrocarbonetos aromáticos policíclicos. 2008. 85f. Dissertação (Mestrado em ciência do solo) - Universidade Federal do Rio Grande do Sul. 2008. < http://hdl.handle.net/10183/32432> SILVA, C.M.M.S.; MELO, I.S.; FAY, E.F. Biotransformação de agrotóxicos e biorremediação. In: SILVA, C.M.M.S.; MELO, I.S.; FAY, E.F. Agrotóxicos e Ambiente, São Paulo: Embrapa, 2007, p.145 – 192. SILVA, K.D. Patentes acadêmicas no Brasil: um novo panorama da contribuição das universidades na trajetória do PCT. 2014. 70f. Dissertação (Mestrado em Economia e Gestão de Ciência, Tecnologia e Inovação) - Instituto Superior de Economia e Gestão: Lisbon School of Economics & Management. 2014. < http://hdl.handle.net/10400.5/6535> 217 SILVA, T. R.; LOPES, S. R.; SPÖRL, G.; KNOPPERS, B. A.; AZEVEDO, D. A. Evaluation of anthropogenic inputs of hydrocarbons in sediment cores from a tropical Brazilian estuarine system. Microchemical Journal, v. 109, p. 178-188, 2013. DOI: 10.1016/j.microc.2012.02.012 SILVA-JUNIOR, J.F.; LÉD, A.S. Botânica. In: SILVA-JUNIOR, J.F.; LÉD, A.S. A cultura da mangaba. Embrapa: Aracaju, p 25-33, 2006. SINGH, A.; KUMAR, V.; SRIVASTAVA, J.N. Assessment of Bioremediation of Oil and Phenol Contents in Refinery Waste Water via Bacterial Consortium. Journal of Petroleum & Environmental Biotechnology, v. 4, p. 145., 2013. DOI: 10.4172/2157-7463.1000145 SISINNI, L.; CENDRON, L.; FAVARO, G.; ZANOTTI, G. Helicobacter pylori acidic stress response factor HP1286 is a YceI homolog with new binding specificity. The FEBS Journal, v. 277, n. 8, p. 1896-1905, 2010. DOI: 10.1111/j.1742-4658.2010.07612.x SIVASUBRAMANIAN, S.; NAMASIVAYAM, S.K.R. Phenol degradation studies using microbial consortium isolated from environmental sources. Journal of Environmental Chemical Engineering, v. 3, p. 243–252, 2015. DOI: 10.1016/j.jece.2014.12.014 SMIT, E.; LEEFLANG, P.; GLANDORG, B.; ELSAS, J.D.V.; WERNARS, K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Applied and Environmental Microbiology Journal, v. 65, p. 2614–2621, 1999. DOI: 10.1128/AEM.65.6.2614-2621.1999 SMULEK, W.; CYBULSKI, Z.; GUZIK, U.; JESIONOWSKI, T.; KACZOREK, E. Three chlorotoluene-degrading bacterial strains: Differences in biodegradation potential and cell surface properties. Chemosphere, v. 237, p. 124452, 2019. DOI: 10.1016/j.chemosphere.2019.124452 SNEATH, P.H.A.; SOKAL, R.R. 1973. Numerical taxonomy. Freeman, São Francisco. SOARES, M.; TEIXEIRA, C. E. P.; BEZERRA, L. E. A.; PAIVA, S. V.; TAVARES, T. C. L.; GARCIA, T. M.; CAVALCANTE, R. M. Oil spill in South Atlantic (Brazil): environmental and governmental disaster. Marine Policy, v. 115, p. 103879, 2020. DOI: 10.1016/j.marpol.2020.103879 SOARES, E. C.; BISPO, M. D.; VASCONCELOS, V. C.; SOLETTI, J. I.; CARVALHO, S. H. V.; DE OLIVEIRA, M. J.; SANTOS, J. C. C. Oil impact on the environment and aquatic organisms on the coasts of the states of Alagoas and Sergipe, Brazil-A preliminary evaluation. Marine Pollution Bulletin, v. 171, p. 112723, 2021. DOI: 10.1016/j.marpolbul.2021.112723 SOKOLO, R.S.; ATAGANA, H.I.; AKANI, N.P. Molecular Characterisation of Culturable Aerobic Hydrocarbon Utilising Bacteria and Fungi in Oil Polluted Soil at Ebubu-Ejama Community, Eleme, Rivers State, Nigeria. Journal of Advances in Biology & Biotechnology, 18(4), 1-7, 2018. DOI: 10.9734/JABB/2018/43507 SONG, H.; ZHOU, L.; ZANG, L.; GOA, B.; WEI, D.; SHEN, Y.; WANG, R.; MIDZAK, C.; JIANG, Z. Construction of a whole-cell catalyst displaying a fungal lipase for effective treatment 218 of oily wastewaters. Journal of Molecular Catalysis B: Enzymatic, v. 71, p. 166–170, 2011. DOI: 10.1016/j.molcatb.2011.04.015 SOUZA, M. A.; GUSMÃO, N. B.; TAKAKI, G. M. C. Produção de enzimas do sistema lignolítico por fungos filamentosos isolados de locais impactados por petroderivados. Exacta, São Paulo, v. 8, n. 3, p. 299-305, 2010. DOI: 10.5585/exacta.v8i3.2269 STAMFORD, T.L.M.; ARAÚJO, J.M.; STAMFORD, N.P. Atividade enzimática de microrganismos isolados do jacatupé (Pachyrhizus erosus L. Urban). Food science and technology, v. 18, n. 4, p. 382-385, 1998. DOI: 10.1590/S0101-20611998000400004 STEINHAUER, M. S.; BOEHM, P. D. The composition and distribution of satured and aromatic hydrocarbons in nearshore sediments, river sediments, and coastal peat of Alaska Beaufort Sea: implications for detecting anthropogenic hydrocarbons input. Marine Environmental Research, v. 33, p. 223-253, 1992. DOI: 10.1016/0141-1136(92)90140-H SUBASHCHANDRABOSE, S.R; RAMAKRISHNAN, B.; MEGHARAJ, M.; VENKATESWARLU, K.; NAIDU, R. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnology Advances, v. 29, n. 6, p.896-907, 2011. DOI: 10.1016/j.biotechadv.2011.07.009 SUN, K.; LI, S.; SI, Y.; HUANG, Q. Advances in laccase-triggered anabolism for biotechnology applications. Critical Reviews in Biotechnology, v. 41, n. 7, p. 1-25, 2021. DOI: 10.1080/07388551.2021.1895053 SUN, R.; JIN, J.; SUN, G.; LIU, Y.; LIU, Z. Screening and degrading characteristics and community structure of a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterial consortium from contaminated soil. Journal of Environmental Sciences, v. 22, n. 10, p. 1576-1585, 2010. DOI: 10.1016/s1001-0742(09)60292-8 SURENDRA, S.V.; MAHALINGAM, B.L.; VELAN M. Degradation of monoaromatics by Bacillus pumilus MVSV3. Brazilian Archives of Biology and Technology, v. 60, 2017. DOI: 10.1590/1678-4324-2017160319 SYLVESTRE, T. F; CAVALCANTE, R. S.; DA SILVA, J. F.; PANIAGO, A. M. M.; WEBER, S. S.; PAULETTI, B. A.; DE CARVALHO, L. R.; DOS SANTOS, L. D.; MENDES, R. P. Ceruloplasmin, transferrin and apolipoprotein A-II play important role in treatment's follow-up of paracoccidioidomycosis patients. PloS one, v. 13, n. 10, p. e0206051, 2018. DOI: 10.1371/journal.pone.0206051 SZKLARZ, G.; ANTIBUS, R. K.; SINSABAUGH, R. L.; LINKINS, A. E. Production of phenoloxidases and peroxidases by wood-rotting fungi. Mycologia, v. 81, p. 234-240, 1989. DOI: 10.2307/3759705 SZOMSZOR, M. The Web of Science Author Impact Beamplots: A new tool for responsible research evaluation. Disponível em: <https://clarivate.com/blog/the-web-of-science-authorimpact-beamplots-a-new-tool-for-responsible-research-evaluation/> Acesso em: mar 2021. 219 TABATABAEI, M.; ZAKARIA, M.R.; RAHIM, R.A.; ABDULLAH, N.; WRIGHT, A.D.G.; SHIRAI, Y.; SHAMSARA, M.; SAKAI, K.; HASSAN, M.A. Comparative study of methods for extraction and purification of environmental DNA from high-strength wastewater sludge. African Journal of Biotechnology, v. 9, p. 4926-4937, 2010. TANG, W.H.; SHILOV, I.V.; SEYMOUR, S.L. Nonlinear fitting method for determining local false discovery rates from decoy database searches. J. Proteome Research, v. 7, n. 9, p. 3661– 3667, 2008. DOI: 10.1021/pr070492f TAPWAL, A.; THAKUR, G.; CHANDRA, S.; TYAGI, A. In-vitro evaluation of Trichoderma species against seed borne pathogens. International Journal of Biological and Chemical Sciences, v.1, n.10, p. 14-19, 2015. ISSN: 2349 - 2724 TAZAKI, K.; FUKUYAMA, A.; TAZAKI, F.; SHINTAKU, Y.; NAKAMURA, K.; TAKEHARA, T.; SHIMADA, K. Twenty Years after the Nakhodka Oil Spill Accident in the Sea of Japan, How Has Contamination Changed?. Minerals, v. 8, n. 5, p. 178, 2018. DOI: 10.3390/min8050178 THATOI, H.; DAS, S.; MISHRA, J.; RATH, B.P.; DAS N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. Journal of Environmental Management, v.146, p. 383-399, 2014. DOI: 10.1016/j.jenvman.2014.07.014 THEERACHAT, M.; GUIEYSSE, D.; MOREL, S.; REMAUD-SIMÉON, M.; CHULALAKSANANUKUL, W. Laccases from marine organisms and their applications in the biodegradation of toxic and environmental pollutants: a review. Applied Biochemistry and Biotechnology, v. 187, n. 2, p. 583-611, 2019. DOI: 10.1007/s12010-018-2829-9 THERMO SCIENTIFIC. 2012. Nano Drop Lite: User guide. Disponível em: <https://www.thermofisher.com/order/catalog/product/ND-LITE-PR> Acessado em: Jul 2018. TIWARI, B.; VERMA, E.; CHAKRABORTY, S.; SRIVASTAVA, A. K.; MISHRA, A. K. Tolerance strategies in cyanobacterium Fischerella sp. under pesticide stress and possible role of a carbohydrate-binding protein in the metabolism of methyl parathion (MP). International Biodeterioration & Biodegradation, v. 127, p. 217-226, 2018. DOI: 10.1016/j.ibiod.2017.11.025 TIWARI, J.; NAOGHARE, P.; SIVANESAN, S.; BAFANA, A. Biodegradation and detoxification of chloronitroaromatic pollutant by Cupriavidus. Bioresource technology, v. 223, p. 184-191, 2017. DOI: 10.1016/j.biortech.2016.10.043 TOLOSA, I., DE MORA, S.; SHEIKHOLESLAMI, M. R.; VILLENEUVE, J. P.; BARTOCCI, J.; CATTINI, C. Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Marine Pollution Bulletin, v. 48, n. 1-2, p. 44-60, 2004. DOI: 10.1016/S0025-326X(03)00255-8 TOMÁS‐ GALLARDO, L.; CANOSA, I.; SANTERO, E.; CAMAFEITA, E.; CALVO, E.; LÓPEZ, J. A.; FLORIANO, B. Proteomic and transcriptional characterization of aromatic degradation pathways in Rhodoccocus sp. strain TFB. Proteomics, v. 6, n. S1, p. S119-S132, 2006. DOI: 10.1002/pmic.200500422 220 TREPTOW, J. P. 2002 f. (2018). Estudo do metabolismo de polietileno: desvendando as estratégias metabólicas microbianas envolvidas na biodegradação de plásticos. (Tese de doutorado em Biologia Molecular), Universidade de Brasília. TRIPATHY, S.K; MAHARANA, M.; ITHAPE, D.M.; LENKA, D.; MISHRA, D.; PRUSTI, A.; SWAIN, D.; MOHANTY, M.R.; RAJ, K.R.R. Exploring rapid and efficient protocol for isolation of fungal DNA. International Journal Of Current Microbiology And Applied Sciences, v. 6, p 951-960, 2017. DOI: 10.20546/ijcmas.2017.603.113 TSAI, Y.-F.; LUO, W.-I.; CHANG, J.-L.; CHANG, C.-W.; CHUANG, H.-C.; RAMU, R.; WEI, G.-T.; ZEN, J.-M.; YU, SSF. Electrochemical hydroxylation of C3–C12 n-alkanes by recombinant alkane hydroxylase (AlkB) and rubredoxin-2 (AlkG) from Pseudomonas putida GPo1. Scientific reports, v. 7, n. 1, p. 1-13, 2017. DOI: 10.1038/s41598-017-08610-w UNIPROT. Universal Protein Resource. Disponível: <https://www.uniprot.org/>Acessado em: jul 2021 UPADHYAY, P.; LALI, A. Protocatechuic acid production from lignin-associated phenolics. Preparative Biochemistry & Biotechnology, p. 1-6, 2021. DOI: 10.1080/10826068.2021.1881908 URATA, M.; UCHIDA, E.; NOJIRI, H.; OMORI, T.; OBO, R.; MIYAURA, N.; OUCHIYAMA, N. Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment. Bioscience, biotechnology, and biochemistry, v. 68, n. 12, p. 2457- 2465, 2004. DOI: 10.1271/bbb.68.2457 VAIDYA, S.S.; PATEL, A.B.; JAIN, K.; AMIN, S.; MADAMWAR, D. Characterizing the bacterial consortium ASDF capable of catabolic degradation of fluoranthene and other mono-and poly-aromatic hydrocarbons. 3 Biotech, v. 10, n. 11, p. 1-12, 2020. DOI: 10.1007/s13205-020- 02478-w VALLECILLOS, L.; SADEF, Y.; BORRULL, F.; POCURULL, E.; BESTER, K. Degradation of synthetic fragrances by laccase-mediated system. Journal of Hazardous Materials, v. 334, p. 233-243, 2017. DOI: 10.1016/j.jhazmat.2017.04.003 VALLEDOR L, JORRIN J. Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. Journal Proteomics. n. 74, v.1, p.1-18, 2011. DOI: 10.1016/j.jprot.2010.07.007 VAN BEILEN, J.B.; FUNHOFF, E.G.; VAN LOON, A.; JUST, A.; KAYSSER, L.; BOUZA, M.; HOLTACKERS, R.; R THLISBERGER, M.; LI, Z.; WITHOLT, B. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases. Applied and Environmental Microbiology Journal, v. 72, n.1, p. 59-65, 2006. DOI: 10.1128/AEM.72.1.59-65.2006 221 VAN BEILEN, J.B.; LI, Z.; DUETZ, W.A.; SMITS, T.H.; WITHOLT, B. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci. Technol., v. 58, n. 4, p. 427-440, 2003. DOI: 10.2516/ogst:2003026 VAN BEILEN, JAN B.; FUNHOFF, Enrico G. Alkane hydroxylases involved in microbial alkane degradation. Applied microbiology and biotechnology, v. 74, n. 1, p. 13-21, 2007. DOI: 10.1007/s00253-006-0748-0 VAN BURIK, J.A.; SCHRECKHISE, R.W.; WHITE, T.C.; BOWDEN, R.A.; MYERSON, D. Comparison of six extraction techniques for isolation of DNA from filamentous fungi. Medical Mycology, v. 36, p. 299-303, 1998. DOI: 10.1080/02681219880000471 VAN HAMME, J.D.; SINGH, A.; WARD, O.P.; Recent advances in petroleum microbiology. Microbiology Molecular Biology, v. 67, p. 503-549, 2003. DOI: 10.1128/MMBR.67.4.503– 549.2003 VANDERA, E.; SAMIOTAKI, M.; PARAPOULI, M.; PANAYOTOU, G.; KOUKKOU, A. I. Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose. Journal of proteomics, v. 113, p. 73-89, 2015. DOI: 10.1016/j.jprot.2014.08.018 VARJANI, S. J.; UPASANI, V. N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation, v. 120, p. 71-83, 2017. DOI: 10.1016/j.ibiod.2017.02.006 VARJANI, S.J. Microbial degradation of petroleum hydrocarbons. Bioresource Technology, v. 223, p. 277-286, 2017. DOI: 10.1016/j.biortech.2016.10.037 VELEZ, P. A.; TALANO, M. A.; PAISIO, C. E.; AGOSTINI, E.; GONZALEZ, P. S. Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation. Environmental Technology, v. 38, p. 2164–2172, 2017. DOI: 10.1080/09593330.2016.1247198 VENN. Venn diagram virtual tool. Bioinformatics & Evolutionary Genomics group. Disponível em: <http://bioinformatics.psb.ugent.be/webtools/Venn/>.Acessado em: jul 2021. VIEIRA, G. A. L. Destoxificação e descoloração de poluentes ambientais por consórcios microbianos marinhos. 2016. 33f. Tese (Doutorado em Ciências Biológicas) - Universidade Estadual Paulista, 2016. <http://hdl.handle.net/11449/148844>. VIGNESHWARAN, C.; VASANTHARAJ, K.; KRISHNANAND, N.; SIVASUBRAMANIAN, V. Production optimization, purification and characterization of lipopeptide biosurfactant obtained from Brevibacillus sp. AVN13. Journal of Environmental Chemical Engineering, v. 9, n. 1, p. 104867, 2021. DOI:10.1016/j.jece.2020.104867 VIGNESHWARAN, C.; VASANTHARAJ, M.J.K.; SIVASUBRAMANIAN, V. A Review on Biosurfactants and its Environmental Applications. IOSR Journal of Environmental Science, Toxicology and Food, v. 10, n. 152–160, 2016. 222 VINOTHINI, C.; SUDHAKAR, S.; RAVIKUMAR, R. Degradation of Petroleum and crude oil by Pseudomonas and Bacillus cereus. International Journal of current Microbiology and Applied Science. 2015; v. 4, n. 1, p.318-329, 2015. ISSN: 2319-7692 VIPOTNIK, Z.; MICHELIN, M.; TAVARES, T. Ligninolytic enzymes production during polycyclic aromatic hydrocarbons degradation: effect of soil pH, soil amendments and fungal cocultivation. Biodegradation, v. 32, n. 2, p.193-215, 2021. DOI: 10.1007/s10532-021-09933-2 VO, C.D.T.; MICHAUD, J.; ELSEN, S.; FAIVRE, B.; BOUVERET, E.; BARRAS, F.; FONTECAVE, M.; PELOSI, L. The O2-independent pathway of ubiquinone biosynthesis is essential for denitrification in Pseudomonas aeruginosa. Journal of Biological Chemistry, v. 295, n. 27, p. 9021-9032, 2020. DOI: 0.1074/jbc.RA120.013748 VOOLSTRA, C.R.; ZIEGLER, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. BioEssays, v. 42, n. 7, p. 2000004. 2020. DOI: 10.1002/bies.202000004 WAGHMODE, T.R; KURADE, M.B.; KHANDARE, R.V.; GOVINDWAR, S.P. A sequential aerobic/microaerophilic decolorization of sulfonated mono azo dye Golden Yellow HER by microbial consortium GGBL. International Biodeterioration & Biodegradation, v. 65, p.1024–1034, 2011. DOI: 10.1016/j.ibiod.2011.08.002 WANAPAISAN, P.; LAOTHAMTEEP, N.; VEJARANO, F.; CHAKRABORTY, J.; SHINTANI, M.; MUANGCHINDA, C.; PINYAKONG, O. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium. Journal of Hazardous Materials, v. 342, p. 561-570, 2018. DOI: 10.1016/j.jhazmat.2017.08.062 WANG, F.; ZHANG, D.; WU, X.; DENG, S. Biodegradation of anionic polyacrylamide mediated by laccase and amidase: Docking, virtual mutation based on affinity and DFT study. New Journal of Chemistry, v. 45, p.14554–14562, 2021. WANG, H.; YANG, Y., XU, J.; KONG, D.; LI, Y. iTRAQ-based comparative proteomic analysis of differentially expressed proteins in Rhodococcus sp. BAP-1 induced by fluoranthene. Ecotoxicology and Environmental Safety, v. 169, p. 282-291, 2019. DOI:10.1016/j.ecoenv.2018.11.022 WANG, H.; YANG, Y.; XU, J.; KONG, D.; LI, Y. iTRAQ-based comparative proteomic analysis of differentially expressed proteins in Rhodococcus sp. BAP-1 induced by fluoranthene. Ecotoxicology and Environmental Safety, v. 169, p. 282-291, 2019. DOI: 10.1016/j.ecoenv.2018.11.022 WANG, J.; WU, L.; YAN, X.; WU, Z.; LONG, G.; WANG, H.; XU, N. Clean Hydraulic Reclamation Technology and Clean Foundation Treatment Technology—Countermeasures to Contaminated Fills. In: WANG, J.; WU, L.; YAN, X.; WU, Z.; LONG, G.; WANG, H.; XU, N. Sustainable Environmental Geotechnics. Springer, Cham, 2020. p. 185-194. DOI: 10.1007/978-3-030-51350-4_20 223 WANG, J.D.; QU, C.T.; SONG, S.F. Temperature-induced changes in the proteome of Pseudomonas aeruginosa during petroleum hydrocarbon degradation. Archives of Microbiology, v. 203, n. 5, p. 2463-2473, 2021. DOI: 10.1007/s00203-021-02211-y WANG, JUN-DI; LI, XU-XIANG; QU, CHENG-TUN. A global proteomic change in petroleum hydrocarbon-degrading Pseudomonas aeruginosa in response to high and low concentrations of petroleum hydrocarbons. Current Microbiology, v. 76, n. 11, p. 1270-1277, 2019. DOI: 10.1007/s00284-019-01754-0 WANG, L.; ZHENG, B. Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. Journal of Environmental Sciences, v. 20, n. 11, p. 1363-1372, 2008. DOI: 10.1016/s1001-0742(08)62234-2 WANG, M.; CHEN, S.; JIA, X.; CHEN, L. Concept and types of bioremediation. In: HASANUZZAMAN, M.; VARA, M.N. Handbook of Bioremediation. Academic Press.2021. p.3-8. DOI: 10.1016/B978-0-12-819382-2.00001-6 WANG, Y.; QIAN, P.Y. Conservative Fragments in Bacterial 16S rRNA Genes and Primer Design for 16S Ribosomal DNA Amplicons in Metagenomic Studies. PLoS ONE, v.4, e7401, 2009. DOI: 10.1371/journal.pone.0007401 WANG, Z.; FINGAS, M. Differentiation of the source of spilled oil and monitoring ofthe oil weathering process using gas chromatography-mass Spectrometry. Journal of Chromatography, v. 712, p. 321-343, 1995. ISSN: 0021-9673 WARDLE, D. A.; BARDGETT, R. D.; KLIRONOMOS, J. N.; SETALA, H.; VAN DER PUTTEN, W. H.; WALL, D. H. Ecological linkages between aboveground and belowground biota. Science, v. 304, n. 5677, p. 1629-1633, 2004. DOI: 10.1126/science.1094875 WEBER, A.; K GL, S. A.; JUNG, K. Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. Journal of bacteriology, v. 188, n. 20, p. 7165-7175, 2006. DOI: 10.1128/JB.00508-06 WEI, K.; YIN, H.; PENG, H.; LU, G.; DANG, Z. Bioremediation of triphenyl phosphate by Brevibacillus brevis: Degradation characteristics and role of cytochrome P450 monooxygenase. Science of The Total Environment, v. 627, p. 1389-1395, 2018. DOI: 10.1016/j.scitotenv.2018.02.028 WEI, R.; ZIMMERMANN, W. Microbial enzymes for the recycling of recalcitrant petroleum‐ based plastics: how far are we?. Microbial Biotechnology, v. 10, n. 6, p. 1308-1322, 2017. DOI: 10.1111/1751-7915.12710 WEIJLAND, A.; HARMARK, K.; COOL, R. H.; ANBORGH, P. H.; PARMEGGIANI, A. Elongation factor Tu: a molecular switch in protein biosynthesis. Molecular microbiology, v. 6, n. 6, p. 683-688, 1992. DOI: 10.1111/j.1365-2958.1992.tb01516.x 224 WENTZEL, A.; ELLINGSEN, T. E.; KOTLAR, H. K.; ZOTCHEV, S. B.; HOLST, M. T. Bacterial metabolism of long-chain n-alkanes. Applied Microbial Biotechnology, v.76, p. 1209- 1221, 2007. DOI 10.1007/s00253-007-1119-1 WHITE, T.J.; BRUNS, T., LEE, S.; TAYLOR, J. Amplification and direct sequencing os fungal ribosomal RNA genes for philogenetics. In: (Eds.) INNIS MA, GELFAND DH, SNINSKY JJ, WHITE TJ. PCR Protocols: A Guide to Methods an Applications. San Diego: Academic Press, p. 315-322, 1990. WILSON, K. Enzyme. In:WILSON, K.; WALKER, J. Principles and Techniques of Biochemistry and Molecular Biology, New York: Cambridge University Pess. 7 ed. Cap 15, p. 581- 624, 2010. WILSON, K.; WALKER, J. M. Principles and techniques of pratical biochemistry. 4th New York, 586 p.1995. WIPO - World Intellectual Property Organization. Statistical profiles of countries: Brazil Disponível em:< https://www.wipo.int/ipstats/en/statistics/country_profile/profile. jsp? code = BR>Acesso em: maio 2020a. WIPO - World Intellectual Property Organization. Statistics. Facts and Figures. Retrieved. Disponível em:< https://www.wipo.int/edocs/infogdocs/en/ipfactsandfigures2019/>Acesso em: maio 20. WOJCIESZYŃSKA, D; HUPERT-KOCUREK, K.; GREŃ, I.; GUZIK, U. High activity catechol 2,3-dioxygenase from the cresols - Degrading Stenotrophomonas maltophilia strain KB2. International Biodeterioration & Biodegradation, v. 65, p. 853–858, 2011. DOI: 10.1016/j.ibiod.2011.06.006 WONG, D.W.S. Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, v. 157, n. 2, p. 174-209, 2009. DOI 10.1007/s12010-008-8279-z WOS - Web of Science. Perfis de autor. Disponível em:< https://wwwwebofscience.ez10.periodicos.capes.gov.br/wos/author/record/43662> Acesso em: Março 2021 WÖSTEN H.A. Filamentous fungi for the production of enzymes, chemicals and materials. Current Opinion in Biotechnology, v. 59, p. 65-70, 2019. DOI: 10.1016/j.copbio.2019.02.010 XIA, M.; FU, D.; CHAKRABORTY, R.; SINGH, R. P.; TERRY, N. Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders, Bioresource Technology, v. 282, p. 456-463, 2019. DOI: 10.1016/j.biortech.2019.01.131 XU, J.; WANG, H.; KONG, D. 2-DE Compared with iTRAQ-based proteomic analysis of the functional regulation of proteins in Rhodococcus sp. BAP-1 response to fluoranthene. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018. p. 012032. DOI: 10.1088/1755-1315/111/1/012032 225 YAKUBU, M.B. Biological approach to oil spills remediation in the soil. Nigerian Journal of Biotechnology, v.6, n. 24, p. 2735-2739, 2007. DOI: 10.5897/AJB2007.000-2437 YANG, B.; LI, Y.; SHANG, Q.; WU, M.; ZHOU, Q.; XU, Q.; DING, C. Enhanced biodegradation of m-dichlorobenzene by Brevibacillus agri under the coexistence system of Zn(II) and Se(IV). Environmental Pollutants and Bioavailability, v. 32, p. 207–216, 2020. DOI: 10.1080/26395940.2020.1845982 YANG, R.; ZHANG, G.; LI, S.; MOAZENI, F.; LI, Y.; WU, Y.; ZHANG, W.; CHEN, T.; LIU, G.; ZHANG, B.; WU, X. Degradation of crude oil by mixed cultures of bacteria isolated from the Qinghai-Tibet plateau and comparative analysis of metabolic mechanisms. Environmental Science and Pollution Research, v. 26, n. 2, p. 1834-1847, 2019. DOI: 10.1007/s11356-018- 3718-z YE, C.; CHING, T.H.; YOZA, B.A.; MASUTANI, S.; LI, Q.X. Cometabolic degradation of blended biodiesel by Moniliella wahieum Y12T and Byssochlamys nivea M1. International Biodeterioration & Biodegradation, v. 125, p. 166-169, 2017. DOI: 10.1016/j.ibiod.2017.09.010 YU, J.; GE, J.; HEUVELING, J.; SCHNEIDER, E.; YANG, M. Structural basis for substrate specificity of an amino acid ABC transporter. Proceedings of the National Academy of Sciences, v. 112, n. 16, p. 5243-5248, 2015. DOI: 10.1073/pnas.1415037112 YUAN, X.; ZHANG, X.; CHEN, X.; KONG, D.; LIU, X.; SHEN, S. Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresource technology, v. 264, p. 190-197, 2018.DOI: 10.1016/j.biortech.2018.05.072 YUN, S. H.; PARK, G. W.; KIM, J. Y.; KWON, S. O.; CHOI, C. W.; LEEM, S. H.; KIM, S. I. Proteomic characterization of the Pseudomonas putida KT2440 global response to a monocyclic aromatic compound by iTRAQ analysis and 1DE-MudPIT. Journal of proteomics, v. 74, n. 5, p. 620-628, 2011. DOI: 10.1016/j.jprot.2011.01.020 ZAFRA, G.; TAYLOR, T.D.; ABSALÓN, A.E.; CORTÉS-ESPINOSA, D.V. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium. Journal of Hazardous Materials, v. 318, p. 702-710, 2016. DOI: 10.1016/j.jhazmat.2016.07.060 ZANAROLI, G.; DI TORO, S.; TODARO, D.; VARESE, G. C.; BERTOLOTTO, A.; FAVA, F. Characterization of two diesel fuel degrading microbial consortia enriched from a non acclimated, complex source of microorganisms. Microbial Cell Factories, v. 9, n. 1, p. 10, 2010. DOI: 10.1186/1475-2859-9-10 ZEHRA, A.; DUBEY, M. K.; MEENA, M.; AAMIR, M.; PATEL, C. B.; UPADHYAY, R. S. Role of penicillium species in bioremediation processes. In: GUPTA, V. K.; RODRIGUEZCOUTO, S. (Ed.) New and future developments in microbial biotechnology and bioengineering. Elsevier, 2018. p. 247-260. DOI: 10.1016/B978-0-444-63501-3.00014-4 ZENG, S.; QIN, X.; XIA, L. Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem Eng J v. 119, p. 92-100, 2017. DOI: 10.1016/j.bej.2016.12.016 226 ZHANG, B.; CHAMBERS, M. C.; TABB, DAVID L. Proteomic parsimony through bipartite graph analysis improves accuracy and transparency. Journal of proteome research, v. 6, n. 9, p. 3549-3557, 2007. DOI: 10.1021/pr070230d ZHANG, B.; MATCHINSKI, EJ.; CHEN, B.; YE, X.; JING, L.; LEE K. Marine oil spills—Oil pollution, sources and effects. In: SHEPPARD, C. (Ed) World seas: an environmental evaluation, 2nd edn Academic Press,2019, pp 391-406. DOI: 10.1016/B978-0-12-805052- 1.00024-3 ZHANG, C.; WU, D.; REN, Huixue. Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Scientific Reports, v. 10, n. 1, p. 1-8, 2020. DOI: 10.1038/s41598-020-66169-5 ZHANG, H.; ZHANG, X.; GENG, A. Expression of a novel manganese peroxidase from Cerrena unicolor BBP6 in Pichia pastoris and its application in dye decolorization and PAH degradation. Biochemical Engineering Journal,. v. 153, p. 107402, 2020. DOI: 10.1016/j.bej.2019.107402 ZHANG, J.; YU, Q.; ZHENG, F.; LONG, C.; LU, Z.; DUAN, Z. Comparing keywords plus of WOS and author keywords: A case study of patient adherence research. Journal of the Association for Information Science and Technology, v. 6, n. 4, p. 967-972, 2016. DOI: 10.1002/asi.23437 ZHANG, L.; LI, X.; ZUO, W.; LI, S.; SUN, G.; WANG, W.; HUANG, H. Root exuded lowmolecular-weight organic acids affected the phenanthrene degrader differently: A multi-omics study. Journal of Hazardous Materials, v. 414, p. 125367, 2021. DOI: 10.1016/j.jhazmat.2021.125367 ZHANG, M.; YOSHIKAWA, M. Bioremediation: Recent Advancements and Limitations. In: REDDY, K. R; AGNIHOTRI, A. K.; YUKSELEN-AKSOY, Y.; DUBEY, B.K.; BANSAL, A. Sustainable Environmental Geotechnics. Springer, Cham, 2020. p. 21-29. DOI: 10.1007/978- 3-030-51350-4_3 ZHAO X, Y.; LI H. The optimized co-cultivation system of Penicillium oxalicum 16 and Trichoderma reesei RUT-C30 achieved a high yield of hydrolase applied in second-generation bioethanol production. Renew Energy, v. 136, p. 1028-1035, 2019. DOI: 10.1016/j.renene.2019.01.066 ZHOU, H.; ZHANG, S.; XIE, J.; WEI, H.; HU, Z.; WANG, H. Pyrene biodegradation and its potential pathway involving Roseobacter clade bacteria. International Biodeterioration & Biodegradation, v. 150, p. 104961, 2020. DOI: 10.1016/j.ibiod.2020.104961 ZHOU, Y.; EID, T.; HASSEL, B.; DANBOLT, N. C. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochemistry international, v. 140, p. 104809, 2020. DOI: 10.1016/j.neuint.2020.104809 ZHUANG, M.; SANGANYADO, E.; XU, L.; ZHU, J.; LI, P.; LIU, W. High throughput sediment DNA sequencing reveals azo dye degrading bacteria inhabit nearshore sediments. Microorganisms, v. 8, n. 2, p. 233, 2020. DOI: 10.3390/microrganismos8020233pt_BR
dc.type.degreeDoutoradopt_BR
Appears in Collections:Tese (POSPETRO)

Files in This Item:
File Description SizeFormat 
Tese_CamilaDantas_2022_ok (1) (1).pdfTese de Doutorado de Camila Paim Dantas7,99 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons