Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/34958
Registro completo de metadados
Campo DCValorIdioma
dc.creatorGalvão-Silva, Fábio Luis-
dc.date.accessioned2022-03-29T15:32:13Z-
dc.date.available2022-03-29T15:32:13Z-
dc.date.issued2020-06-18-
dc.identifier.citationGalvão-Silvapt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/34958-
dc.description.abstractAnastrepha fraterculus (Wiedemann) and Anastrepha obliqua (Macquart) are two of the main pests of global fruit farming, causing economic damage to exporters. In a scenario of climate change, possible changes in the development of these insects can influence their distribution and, consequently, their potential for damage to fruit farming. This work evaluated the effect of different temperatures (15º, 20º, 25º, 30º and 35ºC) on the development time and survival of the immature stages of A. fraterculus and A. obliqua. The development time was inversely proportional to the temperature, with the longest development time of the stages evaluated at 15ºC and the shortest time varying between 25º and 30ºC, for both species. While at 35ºC there was no development of the evaluated stages for A. fraterculus and A. obliqua. The survival rate differed between the evaluated temperatures and the studied species. Anastrepha fraterculus had the highest survival rate of the egg stage at 30ºC (69%), while A. obliqua had the highest rate between 20º and 30ºC (70% and 72%). Survival rates of the larval stage were higher at 25ºC, for both species. However, A. fraterculus was reduced to 15ºC (264 pupae), while A. obliqua was reduced to 30ºC (142 pupae). Survival of the pupal stage was higher at 20ºC and 25ºC for both species. However, A. fraterculus suffered reduced survival when exposed to 30ºC (33 adults), while A. obliqua reduced to 15ºC (49 adults). The development time to adult for both species is shorter in (25 days) at temperatures of 25º and 30ºC. The results suggest a possible reduction in populations of A. fraterculus and A. obliqua in regions that already have high and/or near high temperatures. However, in cold regions where they also occur, an increase in these flies may occur and thus, an increase in the damage they can cause to the cultivated fruit.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectMoscas-das-frutaspt_BR
dc.subjectMudanças climáticaspt_BR
dc.subjectDesenvolvimentopt_BR
dc.subjectPsidium guajavapt_BR
dc.subjectMangifera indicapt_BR
dc.subjectFruticulturapt_BR
dc.titleEfeito da temperatura nos estágios imaturos de Anastrepha fraterculus e Anastrepha obliqua (Diptera: Tephritidae).pt_BR
dc.title.alternativeEffect of temperature on immature stages of Anastrepha fraterculus and Anastrepha obliqua (Diptera: Tephritidae).pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Ecologia:TAV(antigo Programa de Pós em Ecologia e Biomonitoramento) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOSSANIDADE::ENTOMOLOGIA AGRICOLApt_BR
dc.contributor.advisor1Joachim-Bravo, Iara Sordi-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3375354474276488pt_BR
dc.contributor.advisor-co1Nascimento, Antonio Souza-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4338772674638510pt_BR
dc.contributor.referee1Fancelli, Marilene-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/4529940067300638pt_BR
dc.contributor.referee2Carvalho, Carlos Alfredo Lopes de-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8927034737135531pt_BR
dc.contributor.referee3Joachim-Bravo, Iara Sordi-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3375354474276488pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9645012135756493pt_BR
dc.description.resumoAnastrepha fraterculus (Wiedemann) e Anastrepha obliqua (Macquart) configuram-se como duas das principais pragas da fruticultura mundial, causando danos econômicos aos exportadores. Em cenário de mudanças climáticas, possíveis alterações no desenvolvimento desses insetos podem influenciar a sua distribuição e, consequentemente, o seu potencial de dano à fruticultura. Esse trabalho avaliou o efeito de diferentes temperaturas (15º, 20º, 25º, 30º e 35ºC) no tempo de desenvolvimento e na sobrevivência dos estágios imaturos de A. fraterculus e A. obliqua. O tempo de desenvolvimento foi inversamente proporcional à temperatura, apresentando maior tempo de desenvolvimento dos estágios avaliados a 15ºC e o menor tempo variando entre 25º e 30ºC, para ambas as espécies. Enquanto que a 35ºC não houve desenvolvimento dos estágios avaliados para A. fraterculus e A. obliqua. A taxa de sobrevivência diferiu entre as temperaturas avaliadas e as espécies estudadas. Anastrepha fraterculus apresentou maior taxa de sobrevivência do estágio de ovo a 30ºC (69%), enquanto A. obliqua apresentou maior taxa entre 20º e 30ºC (70% e 72%). As taxas de sobrevivência do estágio de larva foram maiores a 25ºC, para ambas as espécies. Contudo, A. fraterculus sofreu redução a 15ºC (264 pupas), enquanto A. obliqua sofreu redução da sobrevivência em 30ºC (142 pupas). A sobrevivência do estágio de pupa foi maior a 20º e 25ºC para ambas as espécies. Todavia, A. fraterculus sofreu redução da sobrevivência desse estágio quando expostas a 30ºC (33 adultos), enquanto A. obliqua reduziu a 15ºC (49 adultos). O tempo de desenvolvimento até adulto para ambas as espécies é menor em (25 dias) às temperaturas de 25º e 30ºC. Os resultados sugerem uma possível redução das populações de A. fraterculus e A. obliqua em regiões que já possuem temperaturas altas e/ou próximas de altas. Porém, em regiões frias onde elas também ocorrem, pode ocorrer um aumento dessas moscas e assim, um aumento no dano que elas podem causar nos frutos cultivados.pt_BR
dc.publisher.departmentInstituto de Biologiapt_BR
dc.relation.referencesAbrafrutas - Associação Brasileira dos Produtores Exportadores de Frutas e Derivados. Brasil. Retieved from: https://abrafrutas.org/, 2019. ADLY, Dalia. Thermal requirements of the peach fruit fly, Bactrocera zonata (Saunders)(Diptera: Tephritidae), and its exotic parasitoid species Aganaspis daci (Weld)(Hymenoptera: Eucoilidae). Egyptian Academic Journal of Biological Sciences. A, Entomology, v. 9, n. 2, p. 89-96, 2016. ALICIA, DORA; YAHIA, M. Mortalidad de huevos y larvas de Anastrepha obliqua (macquart) y A. Ludens (loew) (diptera: tephritidae) en atmosferas controladas y temperatura alta en mango (mangifera indica) cv.'manila'. Folia Entorno!. Mex, v. 109, p. 43-53, 2000. ANDREW, Nigel R. et al. Assessing insect responses to climate change: What are we testing for? Where should we be heading?. PeerJ, v. 1, p. e11, 2013. BEBBER, Daniel Patrick. Range-expanding pests and pathogens in a warming world. Annual review of phytopathology, v. 53, p. 335-356, 2015. BOGGS, Carol L. The fingerprints of global climate change on insect populations. Current Opinion in Insect Science, v. 17, p. 69-73, 2016. BOLZAN, Anderson et al. Development of Anastrepha grandis (Diptera: Tephritidae) under constant temperatures and field validation of a laboratory model for temperature requi3rements. Crop Protection, v. 100, p. 38-44, 2017. BRÉVAULT, Thierry; QUILICI, Serge. Relationships between temperature, development and survival of different life stages of the tomato fruit fly, Neoceratitis cyanescens. Entomologia Experimentalis et Applicata, v. 94, n. 1, p. 25-30, 2000. BROWN, James H. et al. Toward a metabolic theory of ecology. Ecology, v. 85, n. 7, p. 1771-1789, 2004. CORNELISSEN, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomology, v. 40, n. 2, p. 155-163, 2011. DANJUMA, Solomon et al. Effect of temperature on the development and survival of immature stages of the carambola fruit fly, Bactrocera carambolae, and the Asian papaya fruit fly, Bactrocera papayae, reared on guava diet. Journal of Insect Science, v. 14, n. 1, p. 126, 2014. DEUTSCH, Curtis A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, v. 105, n. 18, p. 6668-6672, 2008. DEUTSCH, Curtis A. et al. Increase in crop losses to insect pests in a warming climate. Science, v. 361, n. 6405, p. 916-919, 2018. DUYCK, Pierre François; QUILICI, Serge. Survival and development of different life stages of three Ceratitis spp.(Diptera: Tephritidae) reared at five constant temperatures. Bulletin of Entomological Research, v. 92, n. 6, p. 461, 2002. DUYCK, Pierre François; STERLIN, Joseph Frénel; QUILICI, Serge. Survival and development of different life stages of Bactrocera zonata (Diptera: Tephritidae) reared at five constant temperatures compared to other fruit fly species. Bulletin of Entomological Research, v. 94, n. 1, p. 89, 2004a. DUYCK, Pierre‐Francois; DAVID, Patrice; QUILICI, Serge. A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecological Entomology, v. 29, n. 5, p. 511-520, 2004b. EMERY, Sara E.; MILLS, Nicholas J. Effects of temperature and other environmental factors on the post‐diapause development of walnut husk fly Rhagoletis completa (Diptera: Tephritidae). Physiological Entomology, v. 44, n. 1, p. 33-42, 2019. FLEMING, Richard A.; VOLNEY, W. Jan A. Effects of climate change on insect defoliator population processes in Canada's boreal forest: some plausible scenarios. Water, Air, and Soil Pollution, v. 82, n. 1-2, p. 445-454, 1995. FU, Liao et al. The current and future potential geographic range of West Indian fruit fly, Anastrepha obliqua (Diptera: Tephritidae). Insect science, v. 21, n. 2, p. 234-244, 2014. GILLOOLY, J. F.; DODSON, S. I. The relationship of neonate mass and incubation temperature to embryonic development time in a range of animal taxa. Journal of Zoology, v. 251, n. 3, p. 369-375, 2000. GILLOOLY, James F. et al. Effects of size and temperature on metabolic rate. science, v. 293, n. 5538, p. 2248-2251, 2001. HUGHES, Lesley. Biological consequences of global warming: is the signal already apparent?. Trends in ecology & evolution, v. 15, n. 2, p. 56-61, 2000. KINGSOLVER, Joel G.; HUEY, Raymond B. Size, temperature, and fitness: three rules. Evolutionary Ecology Research, v. 10, n. 2, p. 251-268, 2008. LISBÔA, Heitor et al. Impact of global warming on the distribution of Anastrepha grandis (Diptera: Tephritidae) in Brazil. Arquivos do Instituto Biológico, v. 87, 2020. MALAVASI, Aldo; ZUCCHI, Roberto Antonio; SUGAYAMA, R. L. Moscas-das-frutas de importância econômica no Brasil: conhecimento básico e aplicado. Ribeirão Preto: Holos Editora, 2000. MAPA - Ministério da Agricultura, Pecuária e Abastecimento Defesa agropecuária : histórico, ações e perspectivas, Brasil, 2017. MAYER, Amy. Climate change already challenging agriculture: Wine and coffee producers respond to hotter, drier conditions. Bioscience, v. 63, n. 10, p. 781-787, 2013. O’CONNOR, Mary I.; BERNHARDT, Joanna R. The metabolic theory of ecology and the cost of parasitism. PLoS biology, v. 16, n. 4, p. e2005628, 2018. PRESCOTT III, J. A.; BARANOWSKI, R. M. Effects of temperature on the immature stages of Anastrepha suspensa (Diptera: Tephritidae). Florida Entomologist, p. 297-303, 1971. RADCHUK, Viktoriia; TURLURE, Camille; SCHTICKZELLE, Nicolas. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology, v. 82, n. 1, p. 275-285, 2013. RICALDE, Marcelo P. et al. Temperature-dependent development and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis capitata, from tropical, subtropical and temperate regions. Journal of Insect Science, v. 12, n. 1, p. 33, 2012. RIEGLER, Markus. Insect threats to food security. Science, v. 361, n. 6405, p. 846-846, 2018. RORIZ, A. K. P. et al. Controle para o estabelecimento de colônias de Anastrepha Obliqua e A. fraterculus (Diptera: Tephritidae) com base em características morfológicas externas. Embrapa Mandioca e Fruticultura-Boletim de Pesquisa e Desenvolvimento (INFOTECA-E), 2015. RORIZ, Alzira Kelly Passos; JAPYASSÚ, Hilton F.; JOACHIM‐BRAVO, Iara Sordi. Incipient speciation in the Anastrepha fraterculus cryptic species complex: reproductive compatibility between A. sp. 1 aff. fraterculus and A. sp. 3 aff. fraterculus. Entomologia Experimentalis et Applicata, v. 162, n. 3, p. 346-357, 2017. RWOMUSHANA, I. et al. Effect of temperature on development and survival of immature stages of Bactrocera invadens (Diptera: Tephritidae). Journal of Applied Entomology, v. 132, n. 9‐10, p. 832-839, 2008. SANTOS, Wyratan da Silva. Zoneamento ecológico de Anastrepha fraterculus e Ceratitis capitata (Diptera: Tephritidae) em dois cenários climáticos no Brasil. 2008. Tese de Doutorado. Universidade de São Paulo. SAVAGE, Van M. et al. Effects of body size and temperature on population growth. The American Naturalist, v. 163, n. 3, p. 429-441, 2004. SEAPA -Secretaria de Estado de Agricultura, Pecuária e Abastecimento Brasil. Retrievedfrom: http://www.agricultura.mg.gov.br, 2019. SHARMA, Hari C. Climate change effects on insects: implications for crop protection and food security. Journal of crop improvement, v. 28, n. 2, p. 229-259, 2014. SILVA NETO, Alberto Moreira; DIAS, Vanessa SimÕes; JOACHIM-BRAVO, Iara Sordi. Comportamento Reprodutivo de Ceratitis capitata Wiedemann (Diptera: Tephritidae): Efeito do Tamanho dos Machos Sobre o seu Sucesso de Cópula. EntomoBrasilis, v. 5, n. 3, 2012. SILVA, R. Adaime da, Baia do Nascimento, D., da Glória de Deus, E., Dias de Souza, G., & Patrícia Santos de Oliveira, L. Hospedeiros e parasitóides de Anastrepha spp.(Diptera: Tephritidae) em Itaubal do Piririm, Estado do Amapá, Brasil. Ci. Rural, 2007. SILVEIRA NETO, S.; NAKANO, O.; BARBIN, DNAV. NA V. NOVA. Manual de ecologia dos insetos. São Paulo, Ed. Agronômica Ceres, 1976. STEPHENS, A.; KRITICOS, Darren J.; LERICHE, Agathe. The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). 2007. TAUFER, Maristela et al. Efeito da temperatura na maturação ovariana e longevidade de Anastrepha fraterculus (Wied.)(Diptera: Tephritidae). Anais da Sociedade Entomológica do Brasil, v. 29, n. 4, p. 639-648, 2000. TELLES-ROMERO, R. et al. Effect of temperature on pupa development and sexual maturity of laboratory Anastrepha obliqua adults. Bulletin of entomological research, v. 101, n. 5, p. 565, 2011. UCHÔA, Manoel A.; NICÁCIO, José. New records of Neotropical fruit flies (Tephritidae), lance flies (Lonchaeidae)(Diptera: Tephritoidea), and their host plants in the South Pantanal and adjacent areas, Brazil. Annals of the Entomological Society of America, v. 103, n. 5, p. 723-733, 2010. URAMOTO, K.; ZUCCHI, R. A.; MARTINS, D. dos S. Fruit flies (Diptera, Tephritidae) and their associations with native host plants in a remnant area of the highly endangered Atlantic Rain Forest in the State of Espírito Santo, Brazil. 2008. VANÍČKOVÁ, Lucie et al. Current knowledge of the species complex Anastrepha fraterculus (Diptera, Tephritidae) in Brazil. Zookeys, n. 540, p. 211, 2015. VERA, M. Teresa et al. Mating incompatibility among populations of the South American fruit fly Anastrepha fraterculus (Diptera: Tephritidae). Annals of the Entomological Society of America, v. 99, n. 2, p. 387-397, 2006. WEEMS JR, Howard V. et al. West Indian Fruit Fly, Anastrepha obliqua (Macquart)(Insecta: Diptera: Tephritidae). EDIS, v. 2004, n. 5, 2004.pt_BR
Aparece nas coleções:Dissertação (Pós-Ecologia)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertação_FabioGalvão..pdfDissertação de mestrado885,84 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.