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A new method is proposed to evaluate the probability density function p over the Lorenz attrac-
tor. The conservation statement within the continuity equation for p is equivalently replaced by the
requirement that all elements of an infinite set of integrals involving p are equal. Two approxima-
tions for p are constructed, after considering a finite number s of such integrals and a function II
depending upon a set of parameters. The values these parameters assume in the approximation for

p are given by the solution of a system of equations which arises from the requirement that the ele-

ments of the subset of s integrals are equal. The results are compared with the probability density
function coming from the numerical integration of the continuity equation for p.

I. INTRODUCTION

The problem of the determination of the probability
density function over the phase space of dissipative sys-
tems remains without a general solution both in the tran-
sient and the steady states of these systems. The Lorenz
model, '

x =a(y —x),
P' = —P+fx —xz,
z = bz+xy, —

was first proposed to describe the convection of air in the
atmosphere. Nevertheless it became the most investigated
dissipative system and a large amount of information
about its dynamics and the structure of its attractor is
now avaliable. With respect to the evaluation of the
probability density function p over the Lorenz attractor,
main results have been reported by Graham and co-
workers. ' Their works are based on two fundamental
points. The first concerns the opportunity of approximat-
ing the Lorenz attractor by two-dimensional invariant
manifolds. The second point is the statement of a conser-
vation law (a continuity equation) for p over the attractor.
This is based on the numerical evidence that all trajec-
tories are trapped by the attractor and remain there. The
actual determination of p in quoted articles is performed
by the numerical integration of the continuity equation we
referred to.

The purpose of this work is to develop an alternative
method to evaluate the function p over the Lorenz attrac-
tor. The method is based on a condition which is
equivalent to the continuity equation for p. It states that
all elements of a certain infinite set of integrals
Ik =Ik(p, F) over the attractor are equal, where
F=F(x,y, z) indicates the right-hand side of (1). This
equivalent condition opens the possibility of finding ap-
proximate expressions for p, which can be given in terms
of functions all over the attractor. To this purpose we
consider a tentative function II=II(y,z;A), where A is a
set of S parameters A, i, and a finite number of integrals

II. THE INVARIANT MANIFOLDS
AND THE INTEGRALS II,

The evaluation of the invariant manifolds consists of
finding a relation x=f(y, z) around one of the fixed
points of the model: po =(0,0,0), p+ ——(+c,+c,r —1),
c =v'b(r —1). We consider the three manifolds Mo, M+,
which will be written in terms of power series:

x=f, (y,z)=f, (y, +y,z„+z)=x, + g A", b("),
7l =1

(3)

where + =0,+,—,A", is a line matrix with 2" columns,
and 6(") is the nth Kronecker power of the vector
b, =(r). Each of the manifolds will be determined after
inserting (3) into the equation for x in its local form. For
instance, we have, in a neighborhood of po,

Ik ——Ik(p, F), k=1,2, . . . , s &8+1. The probability den-

sity function p will be approximated by
p(y, z)=II(y, z;tk, i" I), where the values of A,i come from
the solution of

Ik(li(y, z; IA.&') ),F)=R =const, k =1,2, . . . , s . (2)

If s=S+1 the system (2) is completely determined. If
s ~ 8+ I we have to choose the values of some of the A, i
or the constant value of the right-hand side of (2).

The proposed method demands the use of nonlinear nu-

merical techniques in order to solve the set of s equations.
The accuracy of the approximation p can be measured ei-
ther by comparing it directly to p, or by comparing aver-

age values of functions of the dynamical variables of the
system evaluated by direct integration over the attractor
with those obtained along a trajectory.

The rest of this paper is organized as follows. Section
II gives the details of the construction of the invariant
manifolds and how to join them together to approximate
the attractor. Also we arrive at the expression for the Ik.
In Sec. III we propose an ansatz for the tentative function
II. We present the results we have obtained for p after
two successive approximations with s=4 and 5. Finally
we make a critical review of the main steps and difficul-
ties of the proposed method in Sec. IU.
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( y—+.f zf—) +( b—z+fy ) =~(y f—),df
By az

which gives the values of the Ao after comparing the
coefficients of equal power of 8").

The pickles of manifolds constructed by the procedure
described above are not bounded. The regions of interest
for the approximation of the attractor will be those limit-
ed by the boundaries of the attractor. These are obtained
by followin the trajectories T+' ', which move from a
point go+' of a neighborhood of po along the direction
of its unstable one-dimensional manifold to the neighbor-
hood of p ~+~. T+' ' generates the boundary of the
right (left) branch of the attractor. The different mani-
folds M, will be used in the approximation of the attrac-
tor in the following way: the region z &15.5- will be
mapped into Mo. The upper part of the attractor
(z&15.5) which encircles the fixed point p+~ ~

will be
mapped into M+~ ~. The piece of the attractor extends
itself until the boundary defined by T+' '. Its left (right)

boundary is not defined in the region 15.5&z &27 that
corresponds to the region where the two branches of the
attractor merge with each other. We want any region of
the attractor to be mapped into only one piece of mani-
fold. So when 15.5&z &27, M+~ ~

will extend itself to
the left (right) up to a curve y +(z) [y (z)], which is the
locus of the points where it meets M ~+~ at a negative
(positive) value of y. We will suppose hereafter that
y+' ' will consist of two straight line segments linking
the points [—(+)v 72,27] to [—(+)6.5,17] to (0,15.5)
(see Fig. 1). We realize that the actual way the two
branches of the attractor are glued together for the stan-
dard values of the parameters o =10, r=28, and b=8/3
does not differ from the path formed by these line seg-
ments substantially. '* Moreover, the possible errors in-
troduced by this hypothesis are not of great importance,
since the region under direct infiuence of this approxima-
tion is small in comparison with the rest of the attractor.

The steady-state probability function is given by the
continuity equation

27

FIG. 1. Lorenz attractor with the indications of the pieces of the several manifolds which approximate it. Note also the curve
y +(z) and y (z), which describes approximately the locus of the phase space where the two branches of the attractor join together.
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(pg)+ (p& )=0,
Bz

(5)

where g and Ii stand for y and z. Using the two-
dimensional Gauss theorem and a closed Gaussian line
formed by two curves which go from the fixed point p+
to two different points at the boundary T+, and a third
segment linking these two points along the boundary, we
come to the result

f p(y, z )[h (y,z )cos8—g(y, z)sin8]ds =const, (6)

where co+ is one of the two curves linking p+ to the
boundary, and 8=8(y,z) is the angle between the arc ele-
ment ds of the curve co+ and the positive y direction. As
the Gaussian we considered is arbitrary, result (6) is valid
for any curve co+ of the kind stated above. However, (6)
is not valid for a curve hnking p+ to a point on 1,since
Gauss's theorem fails due to the presence of trajectories
coming from the negative branch of the attractor. For the
same reason the curves co+ cannot cross y+ or y . A
similar result is valid for the curves r0 linking p to the
boundary T . Result (6) asserts that the nuinber of tra-
jectories crossing each co+ is conserved, and it can be

directly derived from the solution to (5) given in Ref. 4.

III. RESULTS

Now we proceed along the lines described in Sec. I.
The Ik in (2) are the integrals (6) along different curves
ei+, henceforth called &ok. Any tentative function II
which is intended to be an approximation of p must enjoy
its fundamental properties: to vanish identically at the
boundaries of the attractor and at the fixed points, to be
bounded, and to be at least continuous and positive defin-
ite over the attractor. We will base the definition of our
tentative function on an approximation for the function
p(y, z), which is valid in the region around the origin,
which states

p(yz)-(z —cz) )~exp( —
unsay ) .

In (7), c2, Q, and ufo are functions of the parameters of
the model and take the following values for the standard
values of cr, r, and b used here:

eg ——0.017404 8;
Q =3.435 396 3 „'

u20 =0.002 232 5

p(y, z) p+(y, z)+p (y,z) . (10)

Let ZL+ and ZU+ be the lower and upper boundary of
the right branch of the attractor generated by T+, given
as a function of y. Call YL+ and Yz+ the left and right
part of the same boundary, given as a function of z. The
function ZL+ will be extended to negative values of y with
the help of the boundary generated by T in the follow-
ing way:

ZL+(y)=ZI ( —y), —8.5&y &0.

We introduce also a second "lower boundary" Z L+(y) in
the same interval of the definition (11) as the locus of
points of the curve y+(z}, defined in Sec. II, given as a
function of y. The boundary Fq+(z) is not defined in the
interval 0&z &27. So, for use in the definition of II, we
extend the FL+ for values of z & 27 by

0, z &15.5
z

y +(z), 15.5 &z & 27 .
(12)

Moreever, we will suppose that the coordinates of the
fixed points p+ are (+8.5,27) and that 1'z+(z~27+)
——8.5, so that the boundary FL+ with its extention (12)
is continuous at z=27. This approximation does not have
great influence in the determination of p+, for its value in
the region is negligibly small. On the other hand„ the ac-
tual form of the boundary Fr+ is very difficult to deter-
mine and the above simplification helps the definition of
the tentative function II.

Once all different boundaries of the attractor are com-
pletely characterized, we define the following functions:

In a neighborhocxl of po the boundary of the attractor is

given by z=czy . Thus Eq. (7) indicates that p-(z —zii)~
when we are close to po, where zz is the point at the lower
boundary of the attractor for a fixed value of y. In our
ansatz for the tentative function II, we try to extend the
form of the function (7) to the other regions of the attrac-
tor far from the origin.

We will restrict ourselves to the evaluation of p+,
which is the restriction of p to that part of the attractor
described by M+ and Mo (y &0). The value of p in the
other branch of the attractor is obtained from

p (y,z)=p+( —y,z) .

The total approximate probability density function is

p(x, A, ,X)=
i
x —X

i (13)

pU'4 I'I+. » y&0

'g(yyzyl iyA4y FL yZL tZ g ) —' I +
y yp(z g Z +

)
+ + +

r+ r+p(z, z„z+)
(14)
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g(y»z»A4» Fl. »ZL, «Z I }» z )27

ui(y, z, Ai, lq, FL,ZL, ZL )= ' '
q(y, z, ki, A4, YL,ZL, ZL ), 15.5 &z &27 (15)

0, z g15.5

0, z ~27

Q2(y»z»»(2» IR )= . p(y»A2» —Pa ), 15.5 &z &27

p(y, k„—I"x+), z &15.5

(16)

0, y &
~

1'~+
~

or z p 27

(8.5 —y)p[z, k3,ZU+( —y)]+(y+ 1'q+)p[z, A3, ZU+(y)]

8.5+ FL+

p(z, ki, ZU+), yp8. 5 .

(17)

Finally, the function

il(y, z, Ai, boundaries)

=p(y»X2«FR )p(z»kl»ZL )

x [p(Z»Ag»ZU )(9 i +Qz)+UQ2] (18)

and

y(y, z,y+, z ~, »(6, A7) = [tanh(A 7h+ )tanh(}(~h )]A 6, (20)

where

6+ ——(y+y+ ) + (z —z+ )

Finally we define the tentative function 11 as

II = II(y»z;»( i»boundaries) =A gP}«' « (21)

where A is a normalization constant.
Next we define the curves over the attractor for the

evaluation of the Ik cok, k=1,2,3,4 .are straight lines
connecting p+ to the lower and upper boundary at fixed y
and to the left and right boundary at fixed z. coq links p+
to p along a curve which approaches the locus y+(z)
and y (z) = —y +(z) from above.

In a first step we have considered the curves ~k,
k=1,2,3,4 to evaluate p4. In this case we have put A, z

——0

is the generalization of the first factor of Eq. (7) to all
boundaries of the attractor. The apparent complexity in
the definition of rl is due to the fact that p in (10) must be
continuous all over the attractor, and the boundaries do
jump discontinuously at those points of the attractor
where the two branches merge with each other. Also we
define two other functions to describe the generalization
of the second factor in (7} to the lower part of the attrac-
tor and the infiuence of the fixed points in p. So let

1 z&27

P(y z A5)= —i.~' z z
e 1 — +, zg27

always, so that P=l all over the attractor. We have
chosen different values of R, A,6, and A, 7 and solved the re-
sulting system (2). The numerical work required to solve
(2) may be divided into three major steps: (i) find the
value of the Ik, (ii) solve the system with the help of a
generalized Newton-Raphson procedure, (iii) find the
value of the normalization constant A. To find its value
we integrate p4 [with 3=1 in (21}]over the right branch
of the attractor and assign this value to 1/2A. In this last
steIi we also proceed with the evaluation of the moments
(x y z")z ——(k,m, n )z using p4 as a weight function.

Table I brings the results for some approximations p4
which were obtained for different values of R, »(,6, and A,7.
Besides the solution A,i', l=1,2,3,4 it brings the value of
the normalization constant A, the relative error ek „of
the lowest-order moments (k, m, n)„with respect to the
trajectory-evaluated moments (k, m, n )T, the mean error p,

and the mean absolute error
~
e

~

of the first 43 moments
with k+m+n &6 and k+m even. The values of the
moments depend upon the choice of the free parameters.
The first moment (0,0,1)„ is less dependent of that choice
and always greater than (0,0,1)T. For some values of the
parameters the p4-evaluated first 43 moments have a mean

absolute error
~

e
~

&2%, which is actually very surpris-
1ng.

Figure 2 brings the curves of different p4, ——p4++p4
as well as p=p++p as functions of z for fixed values of
y. The curves for p(y, z) have been drawn using Ref. 4.
Note some characteristics of p which are, to some extent,
reproduced by p4. the height of the curves y=0 and
y=16, the two maxima of the curves y=4 and y =10
and their relative heights, the form of the curves for y =0
and y =4 when z & 30, and so on. However, there are also
discrepancies between p4, and p: p& is always much less
than p when y =0, y =4, and z & 20; p4 ~p for y= 10 and
y=16 and z & 30; the shape of p4 shows an irregularity in
the region around y (z) not present in p; the shape of the
two maxima of p4 in the region about the fixed points is
too sharp in coinparison with that of p.
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)o 3 pter, z&
Y~C

tO 'f (Y,Z1

(b)

RO

40

FIG. 2. Comparison of p(y, z) {full line) with p4(y, z) at constant values of y, for 8, =1.5&10' and different values for (A,6, 17):
———,(5,0.~0); —- —~ —,(8,0.30); - . , (5,0.35). The curves for the three different parameter choices are in practice equal in (d),
when y =16. The larger the values of A,

~ and A,3, the sharper the form of p4. Note the irregularity of the curves when y is crossed
at y =0 and 4. Best visual accordance is found fox the values (5,0.3) of (A,q, A,7).
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ig-& W(v, z)
Y~tO

(c)

IO RO 1 0 40

~0 ~ P{Y, X)
" Y»C-

(d)

R. O

40

FIG. 2. (Conti need).
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i0 f (v, Z)
Y~Q

5,0

1.0

20 50 40

)0 3 f(V, Z)

2.0

10 RO 30

FIG. 3. Comparison of p(y, z) with p5(y, z) for the same values of R and (k6, 17) as in Fig. 2. Note the difference from p4 in the
regions close to the origin. The curve y =0 (A,6

——5, A.~
——0.3) fcts very well with the exact p(y =O,z). The regions far from po are those

where almost no difference exists between p4 and p5.



PROBABILITY DENSITY FUNCTION OVER THE LORENZ. . .
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40

Ib 20

FIG. 3. (Continued).
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We have considered a higher-order approximation
where all the five curves defined previously are taken into
account. The fifth unknown of the system is A, s, while 8,
A,6, and A,7 will remain at our choice as before. The effect
of the fifth condition on the approximation will manifest
itself in the region close to the curve co5, where a better
agreement between p and p& is expected. Table II shows
the results for p&. It contains the same entries as Table I,
plus the value of A,s and the error in Is when it is evaluat-
ed with the A, t' from the solution of the system with s =4
and A,~

——0. This error bJs is about 25%, which indicates
that p4 is too small in that region, as we have pointed out
in the discussion of Fig. 2. The results for the ok~„, g,

and
~

e
~

indicate that the function p& is less dependent on
the choice of R, A,6, ad A,7 as it is expected. We note also
that the eooi is now closer to zero than in the previous ap-
proximation.

In Fig. 3 we draw the function p5 for fixed values of y
in the same way as in Fig. 2. We note that the function io&

has indeed become closer to p in the region y =0, y =4,
y=10, and z &20. The position of the maxima for y =4
and of the first maximum for y =10 have also improved.
The deficiencies for y = 10, y = 16, and z ~ 30 still remain.

The results in Table II may be compared with the
values of Q and uzo given by (8). When we are close to po
the function pz has the same shape as in (7):

—A,
2

Z+i s+ z (22)

We see that A, i+A,z=2.6 is about 75% of Q, which is a
very good result, since this power law is valid for the
whole lower boundary. On the other hand A, &-0.03 stays
far away from the value of ufo.

IV. DISCUSSION AND CONCLUSIONS

The central idea of the proposed method is very simple.
Its major goal is to give an analytical expression which
approximates the probability density function p all over
the Lorenz attractor. However, its implementation faces
many difficulties which are due to the particular shape of
the Lorentz attractor with its two branches, which re-
quires several manifolds to approximate. These difficul-
ties mask the simplicity of the method. As a matter of
fact, the most natural choice for the tentative function, a
linear combination of eigenfunctions, cannot be made
since a set of such functions over the loci where the pieces
of manifolds approximate the strange attractor is not
available. We have been forced to take the tentative func-
tion II, whose pointwise definition strongly depends upon
the position of each point over the attractor. The require-
ment that p must be continuous has forced us to match

different expressions for II in different parts of the attrac-
tor with the help of linear factors such as (z —15.5)/11.5
in (15). That particular term gives rise to an unphysical
irregularity in the shape of p4 and p~ in the neighborhood
of the straight lines which approximate the place where
the two branches merge. Despite these difficulties we
have been able to construct approximate expressions p4
and pq which display many of the major features of the
numerically exact function p.

If the condition (6) holds for any curve co+, the func-
tion iTt=ii(y, z;IA, t'j) must be equivalent to p. If we con-
sider only a finite number of to+'s, we expect to get better
approximations when the number of curves to+ where (6)
holds is increased. However, the lack of a complete set of
eigenfunctions over the attractor makes it hard to develop
a systematic way to get successively better approximations
for io. If we consider the two approximations p4 and io5

presented in the previous section, it is hard to decide
whether the second approximation is better than the first
one. For one side the regions close to to5 have experienced
a better agreement with the numerically evaluated p, as we
see from the Figs. 2 and 3. The mean error of the mo-
ments, however, which takes into account the value of io

all over the attractor, has become larger. In our opinion
the reasons stated above favors that a better agreement be-
tween p and p will be reached if more curves tok and more
free parameters are taken into account. The difficulties
stated above concerning the further development of the
method manifest themselves when we try to bring new
free parameters into our tentative function (21). It is not
straightforward to decide what new features the new free
parameters should describe as well as the way II should
depend on them.

The method relies on heavy numerical work in order to
come to the final results. The integrals Ik as well as their
derivatives BIk /M, t must be numerically evaluated at each
step of the iterative generalized Newton-Raphson pro-
cedure to solve the system of equation (we have used
NAG-library routine CMFAF). Nevertheless once the solu-
tion is found the approximation p may be used at any
time. The roots of system (2) turned out to be very stable
with respect to their numerical evaluation, both when s
equals 4 and 5. For a given set of values of the parame-
ters R, A,6, and A,q the root of the system has been reached
within 30 iterations, starting from any point. In the best
cases we needed 5 iterations to find the A, t' with 10 pre-
cision. With respect to the existence of multiple roots of
(2), we have failed to find any set of values of the free pa-
rameters where more than one root exists.

To conclude, I am aware that any further development
of the proposed method depends upon finding a reason-
able set of functions to expand the. tentative function II.
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