The Journal of Systems and Software 83 (2010) 711-722

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

iy

Contents lists available at ScienceDirect

Stability assessment of aspect-oriented software architectures: A

quantitative study ™

Ambra Molesini ®*, Alessandro Garcia®, Christina von Flach Garcia Chavez €, Thais Vasconcelos Batista ¢

2 Alma Mater Studiorum, Universita di Bologna, Italy

b pontificia Universidade Catélica do Rio de Janeiro (PUC-Rio), Brazil

¢Universidade Federal da Bahia, Brazil

dUniversidade Federal do Rio Grande do Norte, Brazil

ARTICLE INFO

ABSTRACT

Article history:

Received 22 October 2008

Received in revised form 30 April 2009
Accepted 5 May 2009

Available online 15 May 2009

Keywords:

Aspect-oriented software architectures
Crosscutting concerns

Pointcuts

Style semantic composition
Architectural metrics

Design of stable software architectures has increasingly been a deep challenge to software developers
due to the high volatility of their concerns and respective design decisions. Architecture stability is the
ability of the high-level design units to sustain their modularity properties and not succumb to modifi-
cations. Architectural aspects are new modularity units aimed at improving design stability through the
modularization of otherwise crosscutting concerns. However, there is no empirical knowledge about the
positive and negative influences of aspectual decompositions on architecture stability. This paper pre-
sents an exploratory analysis of the influence exerted by aspect-oriented composition mechanisms in
the stability of architectural modules addressing typical crosscutting concerns, such as error handling
and security. Our investigation encompassed a comparative analysis of aspectual and non-aspectual
decompositions based on different architectural styles applied to an evolving multi-agent software archi-
tecture. In particular, we assessed various facets of components’ and compositions’ stability through such
alternative designs of the same multi-agent system using conventional quantitative indicators. We have
also investigated the key characteristics of aspectual decompositions that led to (in)stabilities being
observed in the target architectural options. The evaluation focused upon a number of architecturally-rel-

evant changes that are typically performed through real-life maintenance tasks.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Given the increasing volatility of contemporary software
requirements, many organizations are pursuing the achievement
of stable software architectures as a way to control their software
development and maintenance costs (Jazayeri, 2002; Bahsoon and
Emmerich, 2004). Hence, stability is often seen as a primary crite-
rion to assess the value of constantly-changing software architec-
tures (Bahsoon and Emmerich, 2004). Design stability is directly
dependent on the ability of a software architecture to sustain its
modularity properties and not succumb to modifications (Yau
et al., 1985; Baldwin and Clark, 1999; Casais, 1995). It is well
known that the achievement of stable architectures is largely
dependent on the used composition mechanisms (Yau et al,,
1985; Casais, 1995; Greenwood, 2007). In addition, recent empiri-

* This paper is an extension of Molesini et al. (2008).
* Corresponding author. Tel.: +39 051 2093541; fax: +39 051 2093073.
E-mail addresses: ambra.molesini@unibo.it (A. Molesini), afgarcia@inf.puc-rio.br
(A. Garcia), flach@ufba.br (C. von Flach Garcia Chavez), thais@ufrnet.br (T.V.
Batista).

0164-1212/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2009.05.022

cal studies have also pointed out that design instabilities are di-
rectly proportional to the degree of crosscutting concerns
(Greenwood, 2007; Figueiredo et al., 2008).

As a consequence, many researchers have claimed that aspect-
oriented software development (AOSD) (et al., 2005) lead to
architectural decompositions that cope better with changes to
crosscutting concerns. Architecting aspect-oriented software de-
signs basically relies on using new composition mechanisms that
allow for quantifying otherwise crosscutting concerns. In fact, the
core of existing aspect-oriented extensions (Garcia et al., 2006) to
existing architecture description languages (ADLs) resides on the
explicit support for expressing quantifications of architecturally-
relevant crosscutting behaviors (Batista et al., 2006; Garcia et al.,
2008). Aspect-oriented ADLs (Garcia et al., 2006; Navasa et al.,
2005; Pinto et al., 2005; Quintero et al., 2005) foster fine-grained
composition specifications by means of pointcut specifications.
Architectural pointcuts select points - the join points - in of a
behavioral architecture description where aspect composition is
supposed to take place. Pointcuts allow for the flexible binding of
“aspectual components” to the selected join points, a characteristic
not supported by conventional ADLs (Garcia et al., 2006; Quintero
et al.,, 2005).

mailto:ambra.molesini@unibo.it
mailto:afgarcia@inf.puc-rio.br
mailto:flach@ufba.br
mailto:thais@ufrnet.br
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss

712 A. Molesini et al./The Journal of Systems and Software 83 (2010) 711-722

However, there is no empirical understanding of the positive
and negative effects of aspect-oriented (AO) software architectures
in promoting architectural design stability. In particular, there is a
pressing need for analyzing the extent of the benefits and draw-
backs of the richer AO composition capabilities in the presence of
architecturally-relevant changes. However, it has been empirically
observed that flexible composition mechanisms might be detri-
mental to design stability (Yau et al., 1985; Casais, 1995; Green-
wood, 2007). For instance, certain studies have detected that the
versatility of multiple inheritance is one of the main causes of rip-
ple effects in object-oriented (00) software architectures (Casais,
1995).

The difficulty of analyzing the stability of aspect-oriented archi-
tecture designs stems from the fact that aspectual compositions
can take significantly different forms according to the dominant
architectural decompositions applied. Join point models are sensi-
tive to the semantics of the architectural styles instantiated and
composed in the context of a particular application. For instance,
the join points in a client-server architecture are essentially differ-
ent from the ones available in a blackboard architecture. Also, the
set of crosscutting concerns and the nature of their manifestations
might differ due to the interaction and topology constraints de-
fined by certain styles. The situation becomes even more intricate
in hybrid software architectures where multiple styles are com-
posed in heterogeneous ways.

In this context, this paper presents an exploratory quantitative
study (Section 2) where we have analyzed the stability of aspect-
oriented software architectures designed for a multi-agent system
(MAS). We have compared the influence of non-aspectual and
aspectual decompositions on the architectural stability of crosscut-
ting concerns found in architectural designs based on four archi-
tectural styles (Section 3). We present AO composition based on
style semantics and examples of AO architectural designs and re-
lated pointcuts (Section 4). These alternative style-based designs
of the same system were the target of typical architectural changes
so that we could contrast ripple effects detected in both conven-
tional and pointcut-based bindings (Section 5).

We have used a conventional suite of architectural stability
metrics in order to search for evidence with respect to the follow-
ing research questions: to what extent ripple effects increase or de-
crease when aspect-oriented compositions are used? how different
types of crosscutting concerns and architectural styles influence
positively and negatively the architecture stability? which join
point models and other aspectual composition characteristics led
to more architectural instabilities? (Section 6) Finally, we also dis-
cuss related work and provide a correlation of our findings with a
previous implementation-level stability study (Greenwood, 2007)
we have performed (Section 7) and draw some conclusions (Sec-
tion 8).

2. Study settings

This section describes the configuration of our study - the crite-
ria for selecting the target system and the definition of the analyt-
ical methodology (Section 2.1). We also present a brief overview of
the selected target system (Section 2.2).

2.1. Methodological procedures

2.1.1. The case study

The first major decision concerning our investigation was the
selection of the target system to be used in the case study. The
Conference Management System (CMS) (Ciancarini et al., 1996) is
a typical multi-agent system (MAS) with the purpose of providing
automated support for a number of time-consuming activities re-
lated to the management of scientific conferences. The CMS meets

a number of relevant criteria for our intended analysis. First and
foremost, it is a realistic and non-trivial system with existing alter-
native implementations based on heterogeneous middleware sys-
tems (TuCSoN, xxxx; Mamei et al., 2005). These systems realize
heterogeneous architectural designs, following classical and MAS-
specific architectural styles. Second, the MAS domain entails com-
plex software architectures with diverse categories of crosscutting
concerns (Garcia et al., 2008). In particular, the CMS application
encompasses a number of crosscutting concerns ranging from
more widely-scoped system properties, such as coordination and
error handling, to fine-grained agent features, such as agent auton-
omy, learning, and code mobility (Garcia et al., 2008; Garcia et al.,
2004). Also, CMS is the most widely-used benchmark in the MAS
community (Ciancarini et al., 1996).

2.1.2. Heterogeneous architecture designs

Each architectural design decision for existing CMS versions has
been extensively discussed and evolved over time in a controlled
manner. The first CMS (Garcia et al., 2004; Garcia et al., 2008)
was a three-tiered application that embedded a blackboard com-
ponent to manage conference information. The original CMS has
progressively evolved in accordance to different MAS-specific hy-
brid styles, namely reflective blackboard (Silva et al., 2002), reac-
tive coordination (TuCSoN, xxxx), and stigmergic coordination
(Mamei et al., 2005). The evolved designs were developed in re-
sponse to new emerging requirements and to address modularity
problems identified in previous CMS versions. New requirements
were also systematically identified in qualitative and quantitative
assessments of the alternative CMS architectures that we have car-
ried out over the past five years (Garcia et al., 2004; Garcia et al.,
2008; Molesini et al., 2007).

We have derived ADL-based architectural representations from
existing running implementations in Java and Aspect] (Garcia et al.,
2008; Garcia et al., 2004) of CMS as the basis for our analysis.
Respective documentation (e.g. Ciancarini et al., 1996; TuCSoN,
xXxX; Mamei et al., 2005) was also exploited to refine the architec-
tural descriptions expressed in ACME (Garlan et al., 1997) and
AspectualACME (Garcia et al., 2006). The releases of the ADL repre-
sentations were produced based on architecture-level modifica-
tions devired from a set of change requests; such releses were
could not be produced from existing implementation releases as
we needed to equally apply the same changes to all the architec-
tural versions so that we could compare them.

2.1.3. Analysis steps

On investigating the influence exerted by styles on the manifes-
tation of architectural crosscutting concerns, our analysis was di-
vided in four major phases: (i) the first phase reviewed how
classical styles were instantiated and composed to derive the origi-
nal CMS architecture, (ii) the second phase identified occurrences
of crosscuttings in such an original CMS architecture, (iii) the third
phase involved the discussion of different styles used afterwards to
implement alternative AO and non-AO CMS architectures, and (iv)
the fourth phase analyzed the similarities and divergences of the
crosscutting concerns found in the CMS (including the original
and alternative architectures).

2.2. Conference Management System

The Conference Management System (CMS) is an application
that supports the management of scientific conferences (Ciancarini
et al., 1996). It involves several non-trivial design details, from the
main organization issues to paper submission, peer review and
proceedings production. The agents enrolled in this system repre-
sent a number of people involved, such as chairs and reviewers.
Setting up and running a conference is a multi-phase process,

A. Molesini et al./ The Journal of Systems and Software 83 (2010) 711-722 713

involving several individuals and groups. During the submission
phase, authors send papers, and are informed that their papers
have been received and have been assigned a submission number.
In the review phase, the program committee (PC) has to handle the
review of the papers: contacting potential referees and asking
them to review a number of the papers. There are various strate-
gies that can be used to distribute the papers, for example, titles
and abstracts may be broadcast, then a bidding mechanism can
be implemented, or the PC-chair decides to distribute the papers
based on the expertise of the various PC-members. Also, the sys-
tem must prevent the PC-chair from accessing or inferring infor-
mation about their own submissions. In the final phase, authors
need to be notified of these decisions and, in case of acceptance,
must be asked to produce a revised version of their paper. The pub-
lisher has then to collect these final versions and print the
proceedings.

3. Architectural designs for the CMS

This section presents the architectural designs for the CMS in
terms of four architectural styles (Section 3.1) and discusses how
each style deals with the crosscutting concerns that were identified
in the original CMS architecture (Section 3.2).

3.1. Architectural styles

The original architecture of the CMS uses the blackboard style
(Nii, 1986; Buschmann et al., 1996; Clements et al., 2007; Shaw
et al., 1996). Additionally, three stylistic variations of the black-
board style were used to derive alternative architectural designs
for the CMS: reflective blackboard (Silva et al., 2002), reactive coor-
dination (TuCSoN, xxxx) and stigmergic coordination (Mamei et al.,
2005) styles.

3.1.1. Blackboard style

The basic architecture of the CMS in the blackboard style con-
sists of a blackboard, a collection of knowledge sources (KSs) and
a control component. The Blackboard_CMS component is the cen-
tral data storage structure (Fig. 1) where submitted papers, infor-
mation about the authors, review templates and list of accepted
papers can be inspected or updated by several KS components,
such as PC-Chair, Reviewer, etc. Two connectors, inspection
and update, describe the interaction between the KSs and the
Blackboard_CMS component. The connectors embody access con-
trol policies to the blackboard, so that the PC-chair and reviewers
have different read and write access rights. Control_CMS is the

Conflict-Data update ER—f®]
Reviewer
Blackboard_CMS
=
Paper-Data
i I
!
Author-Data &l ®
SR m

Fig. 1. Blackboard design for CMS.

control component, responsible for managing the course of the
complex workflow that characterizes the CMS. It can be viewed
as a specialist in directing problem solving, by considering the
overall benefit of the contributions that would be made by activat-
ing specific agents (PC-Chair or Reviewers). The Control_CMS
component needs to be informed about Blackboard_CMS state
changes regularly. This interaction follows a publish-subscribe
protocol. Control_CMS interacts with each KS: (i) to query
whether they can perform some action that contributes to the
overall solution, and to select one KS, and (ii) to activate (or trigger)
the execution of the selected KS. These interactions are described
by the connectors selection and activation, respectively
(Fig. 1). Since Control_CMS selects and activates the KSs, CMS
agents are simple reactive agents and do not have complex cogni-
tive skills.

3.1.2. Reflective blackboard style

The reflective blackboard style (Silva et al., 2002) combines two
well-known architectural styles (Buschmann et al., 1996) to devel-
op MASs: the blackboard and the reflection styles. The reflection
style provides specific architectural elements — meta-objects and
the meta-object protocol (MOP) - for dynamically changing the
structure and behavior of the target blackboard component. Ele-
ments of the blackboard (e.g. tuples) are associated via MOP with
meta-objects defined in the control component; they can be used
to implement, for instance, error handling strategies and complex
coordination protocols. In systems that follow the reflective black-
board style, application agents and data are encapsulated at the
base level while control resides at the meta-level. Fig. 2 presents
a reflective-blackboard view for the CMS. Communication is
centralized on the Blackboard_CMS blackboard and the
Control_CMS component is transparently inserted in the desired
points of inter-agent communications by using reflective features.
The Control CMS component has a sophisticated internal

PC-Chair

Reviewer

Control_CMS

| object call =

Fig. 2. Reflective blackboard design for CMS.

lhd

MOP_CMS Object_CMS

714 A. Molesini et al./ The Journal of Systems and Software 83 (2010) 711-722

structure that consists of the MOP_CMS component and several
Object_CMS components (the meta-objects). The MOP_CMS compo-
nent and Ob ject_CMS components are responsible for dynamically
changing the structure and behavior of the Blackboard_cMS. Ele-
ments of the Blackboard_CMS are associated via MOP_CMS with
the Object_CMSs defined in the Control_CMS component. This
structure implies that rule enforcement on the CMS workflow
(e.g., bidding and automatic matching based on keywords in paper
assignment phase) and security policies (e.g. access control) can be
properly encapsulated in separate meta-objects. This means that
the interaction among Blackboard_CMS, PC-Chair and Re-
viewer can be simplified: it is not necessary to specify access con-
trol policies inside different connectors because these policies are
managed by the meta-objects in a more natural way. For example,
the access to specific information is given to agents via special tu-
ples stored in Blackboard_CMS and created by the meta-objects.
Now a change in an access policy implies the modification of the
content of the tuple(s) produced by the meta-object responsible
for this policy only and do not involve change in the
Blackboard_CMS’s interfaces or connectors.

3.1.3. Reactive coordination style

The reactive coordination style is a refinement of the black-
board style in order to address the management of complex coor-
dination protocols. It provides a repository of tuples that can be
accessed concurrently. The idea behind this style is that the behav-
ior of a communication abstraction like a shared data space is eas-
ily defined as the observable state transition following a
communication event. This is supported by reactions. A reaction
is defined as a set of operations which may atomically produce ef-
fects on the coordination media state. Typically, a reaction is rep-
resented as a particular tuple and its content is written according
to a specific reaction language. This style is adopted by TuCSoN
(xxxx), an infrastructure for agent coordination in which a tuple
centre represents the programmable coordination medium.

Fig. 3 presents a reactive-coordination view for the CMS. The
TC_CMS component is the tuple centre. TC_CMS is composed by
the Reaction_TS component and the Data_TS component - each
of them is also a tuple space. Reaction_TS is the container for
reactions written by the users (or by the agents) and Data_TS is
the container for data in the system (information about papers,
authors, etc.). These two components are strictly related: Reac-
tion_T$S monitors Data_TS by means of the monitoring connec-
tor. This connection allows the management of complex

PC-chair

Reaction_TS

b iy

TC_CMS

monitoring data modification

inspection

Fig. 3. Reactive coordination design for CMS.

coordination patterns: when a new event occurs inside Data_TS§,
this information flows through the monitoring connector to the
Reaction_TS component. If necessary, the state of Data_TS is
changed by the Reaction_TS component by means of the infor-
mation that flows through the data modification connector.

3.1.4. Stigmergic coordination style

The stigmergic coordination style is another refinement of the
blackboard style, particularly suited for self-organizing systems.
Stigmergy (Mamei et al., 2005) refers to the kinds of indirect inter-
actions occurring among situated agents that, by affecting and
sensing the properties of a shared environment, reciprocally affect
each others’ behavior. So far, the most widely used stigmergic
mechanisms in MAS include pheromone-based behaviors, relying
on agents depositing markers that the environment can diffuse
and evaporate. This style presents a pheromone-based approach:
tuples can be seen as pheromones, each of them with its own prop-
agation rule that specifies both the intensity and the evaporation’s
scope of the pheromone. The tuple space acts only as a shared
data-space where the tuples are stored and executed. TOTA (Ma-
mei et al., 2005) is an infrastructure that enables stigmergic inter-
actions among distributed agents.

Fig. 4 presents a stigmergic-coordination view for the CMS. The
TS_CMS component represents the tuple space, a shared data-space
like a blackboard. This component stores tuples and puts them in
execution. The Tuple component is composed by three different
components: Maintenance Rule, Propagation Rule, and Con-
tent. The Content component is an ordered set of typed fields
representing the information carried on by the tuple. The Propa-
gation Rule component determines how the tuple should be dis-
tributed and propagated across the network. Maintenance Rule
determines how a tuple distributed structure should react to
events occurring in the environment. Both Maintenance Rule
and Propagation Rule can affect Content by means of the
data-modification connectors. When a new event occurs inside
TS_cMS this information flows through the event-bus connector
to the Maintenance Rule component that is put in execution
by the TS_cMS. The Maintenance Rule component changes the
state of TS_CMS and, at the same time, this change could both: (i)
trigger the execution of Propagation Rule by means of the com-
mon Tuple’s interface to the state modification connector and,
(ii) affect the Content component. The execution of the Propaga-
tion Rule component changes the state of TS_CSM that generates
a new event and so on. Periodically, the Propagation Rule

PC-Chair

h)

b dg

tion

hd hd
= creation

Fig. 4. Stigmergic coordination design for CMS.

A. Molesini et al./ The Journal of Systems and Software 83 (2010) 711-722 715

component of all the tuples stored in TS_CMS are put in execution
for the evolution of the system.

PC-Chair and Reviewer agents generate tuples and their inter-
nal components by the using the creation connector. Agents
therefore become responsible for complex interaction protocols
and this leads to coordination and security crosscutting concerns.
When PC-Chair or Reviewer generates a tuple, it is stored in
TS_CMS using data storing and update connectors. When an
agent needs to retrieve a tuple, the inspection connector is used.

3.2. Architectural crosscutting concerns

Crosscutting concerns cut across the boundaries of modular units
and tend to be scattered over several modules and tangled up with
other concerns. The natural consequences of crosscutting are lower
cohesion and stronger coupling between modular units, reduced
comprehensibility, evolvability and reusability of software arti-
facts. In order to determine which concerns are or are not crosscut-
ting in the CMS, we have used the following strategies (Garcia
et al., 2008): (i) identify architectural tangling, that is, the mix of
multiple concerns together in the same component or connector;
(ii) identify architectural interface bloat, that is, search for evidence
of increase in the complexity of component interfaces; and (iii)
identify architectural scattering, that is, concerns that are spread
in different components and connectors.

After a careful study involving the MAS-specific architectural
styles presented in Section 3.1, we have identified three different
crosscutting concerns: coordination, error handling, and security.
The following subsections discuss the nature of each of these cross-
cutting concerns in terms of CMS architecture alternatives. We
have used a metrics suite to support our identification of tangling,
scattering and interface bloat (Sant’Anna et al., 2008) and the mea-
sures can be found at Chavez et al. (2007).

3.2.1. Coordination

Coordination is the regulation of diverse elements into an inte-
grated and harmonious operation. Coordination is a crosscutting
concern in the blackboard style. In fact, this style provides support
only for the modular implementation of simple coordination pro-
tocols. Complex coordination protocols are necessarily realized
by the multiple involved agents. As a result, responsibilities associ-
ated with the coordination protocol are scattered around all the
agents involved in the protocol. For example, the PC-chair should
manage all the workflow’s steps from the submission phase to
the final review. In each step, this agent should check if all the con-
ference’s rules are respected. Also, it is in charge of interacting with
PC-members and coordinating them in order to assign each paper
to the right number of suitable PC-members and collect the paper
reviews. This process could be better modularized if the black-
board could provide more sophisticated coordination services to
the PC-chair.

Modifications to the coordination protocol are very problematic
because they involve the modification of the interfaces associated
with all components. Consider, for example, the process of paper
partitioning and assignment. Suppose that the PC-chair needs to
change the paper partitioning and assignment process in order to
keep it manageable while scaling up the conference dimension (of-
ten related to the number of submitted papers). Several modifica-
tions may be necessary in different parts of the CMS to deal with
such a change: the PC-chair interfaces, the information gener-
ated for this protocol, pieces of the Control_CMS component
and its interfaces (possibly because Control_CMS must trigger,
for example, different Reviewer agents or a different number of
reviewers) and also the activations of the agents. The Reviewers’
interfaces and code must be changed in order to support this new
protocol. Also, the blackboard interfaces need to be changed be-

cause it needs to store different kinds of information and to inter-
act in new ways with the system’ agents.

Coordination is not a crosscutting concern in the reflective
blackboard and reactive coordination styles. In the former style,
the coordination is realized by means of Object_CMSs that are
allocated inside the control component, while in the reactive coor-
dination style, the complex coordination protocols are imple-
mented by reactions typically allocated inside the tuple centre. In
our partitioning and assignment example, the protocol change only
requires a modification of the specific Object_CMS that manages
the protocol for the reflective blackboard style, and a modification
on the reactions of the reactive coordination style.

3.2.2. Error handling

Error handling is widely recognized as a global design issue and
has been extensively referred to in the literature as a classical
crosscutting concern in systems following different kinds of archi-
tecture decompositions (Soares et al., 2002; Filho et al., 2006). In
the blackboard style, error handling is a crosscutting concern since
exceptional conditions must be propagated from the blackboard to
several knowledge sources. Similarly, error handling is a crosscut-
ting concern in the other styles as error handling involves several
different entities (e.g., when communication exceptions occur dur-
ing collaborations between knowledge sources). In fact, in the
reflective blackboard and reactive coordination decompositions
of the CMS system, agents and the coordination medium are in-
volved in error handling. Each component should be equipped with
specific code in order to react to system’s failures.

3.2.3. Security

Information security is the process of protecting data from unau-
thorized access. In the context of CMS, access control is a security
key problem, specially if, as it is often the case, PC-members are al-
lowed to submit papers: in this case, one must prevent them from
accessing (or even just inferring) information about their own sub-
missions. In the blackboard style, security is a crosscutting concern
because the code for the access control is spread over several agents
(and tuples in the case of stigmergic coordination). System mainte-
nance and improvement become harder because several different
entities must be modified. The crosscutting manifestation is similar
in the stigmergic coordination style. For instance, a modification in
the CMS access policy implies in changing the Reviewer interface
to the TS_cMS component and also the modification of the connec-
tors between TS_CMS and Reviewer because the flow of informa-
tion and the kind of tuples that the components exchange are
different.

Security is not a crosscutting concern in the reflective black-
board style because the security policies could be incorporated in
meta-objects inside the control component. Similarly, in the reac-
tive coordination style, security is not a crosscutting concern be-
cause the code relative to a specific access policy is encapsulated
in the agent class that implements this policy.

4. Aspect-oriented software architectures

Architectural aspects are expected to modularize those widely-
scoped concerns, which cannot be localized in individual compo-
nents using conventional architectural decompositions (Quintero
et al., 2005; Chitchyan et al., 2005). Several aspect-oriented archi-
tectural description languages (AO ADLs) support aspectual
decompositions and provide aspects (or equivalent mechanisms)
to modularize crosscutting concerns. They also support architec-
ture-level pointcuts for selecting join points that are relevant to
the composition of aspects at the architectural level. Pointcuts se-
lect a set of join points based on some property; for instance, syn-
tax-based pointcuts select join points based on the names of

716 A. Molesini et al./The Journal of Systems and Software 83 (2010) 711-722

Table 1
Blackboard’s join point model.

Where

KS, Blackboard
Blackboard, control
Control, KS

Join point type

Inspect blackboard, update blackboard
Signal status change
Query source, select source, activate source

components and ports, while style-based pointcuts select join points
based on style semantics (Chavez et al., 2009). In order to support
aspect composition, a join point model that indicates the valid join
points must be provided (Kiczales et al., 2001), usually by the style
designer.

AspectualACME (Garcia et al., 2006) is an AO ADL that extends
ACME (Garlan et al., 1997) with a specialized connector that local-
izes the interaction between components that play the role of as-
pects (“aspectual components”) and regular components. In our
study, we have defined four ACME families, one for each style de-
scribed in Section 3.1. Furthermore, each family specification is re-
lated to a join point model for the corresponding style (Section
4.1). Aspectual ACME supports both syntax-based and style-based
pointcuts, but in our study, only the AO designs in which aspect
composition is based on style semantics have been used (Section
4.2).

4.1. Style-specific join point models

A style-specific join point model defines a set of join point types
that are related to some architectural style. In this section, we pres-
ent joint point models for three styles presented in Section 3.1. We
depart from some documented uses of each style (Nii, 1986; TuC-
SoN, xxxx; Mamei et al., 2005) or at least one good source of style
guide (Shaw et al.,, 1996; Clements et al., 2007; Silva et al., 2002)
publicly available. Tables 1-3 present joint point models for the
blackboard, reflective blackboard and reactive coordination styles.
A join point model for the stigmergic coordination style can be
found in Chavez et al. (2007).

Stylistic specializations of the blackboard style may strengthen
its constraints, specialize element types, add element types, etc.
This begs the question as to how the join point model of the de-
rived style differs from the join point model of the base style.
Our case study helped us to identify four different situations: (1)
base joint points are reused in the derived style, (2) new kinds of
join points are introduced by the derived style, (3) joint points
overlap and must be reconciled in the derived join point model,
and (4) base join points are not necessary in the derived style.
These situations are illustrated in the following paragraphs.

4.1.1. Blackboard

Table 1 presents a joint point model for the blackboard style
that comprises six joint point types: (i) inspect blackboard describes
the points where data is read from the blackboard, in the context of
an interaction with some KS; (ii) update blackboard describes the
points in which some KS writes data in the blackboard; (iii) query
source denotes the points where the Control makes a query over

Table 2
Reflective Blackboard’s join point model.

each KS to determine if they are potential contributors in order
to select a KS to activate; (iv) select source denotes the points where
the Control selects a KS; (v) activate source join point type describes
the points where the Control puts in execution the more suitable
KS; and (vi) signal status change describes the points in which the
blackboard notifies its status changes (for example, the writing of
data in the blackboard generates a status change event).

4.1.2. Reflective blackboard

This style combines two base styles through the union of their
design vocabularies, and conjoining their constraints. An hybrid
join point model is defined from the resulting types defined by
the conjunction. The join point model defined for the reflection
style consists of three join point types: (i) reification denotes
the points where the base level notifies its status changed; (ii)
metaobject call denotes the points where the MOP_CMS puts in
execution the more suitable 0bject_CMS; and (iii) adaptation de-
notes the points where the 0bject_CMS changes the state of base
level. Join points from the two base join point types may overlap:
signal status change (blackboard style) and the reification (reflec-
tion style) join point types need to be reconciled. This unification
allows the MOP_CMS component to capture the events generated
by the Blackboard_cMs. The query source, select source and the
activate source join point types become unnecessary. Table 2 pre-
sents join point models for the blackboard and the reflection
styles, and the resulting join point model for the reflective black-
board style.

4.1.3. Reactive coordination style

In the reactive coordination style, the TM_CMS component
(Fig. 3) is a specialization of the blackboard component that com-
prises two tuples spaces (Data_TS and Reaction_T8). The join
point model for this style introduces three new join point types
(Table 3): (i) data modification denotes the points where the Reac-
tion_TS component changes the tuples stored inside the Data_TS
component; (ii) behavior changing denotes the points where an
agent changes the contents of the Reaction_TS; and (iii) notify
status change denotes the points where the Data_TS component
notifies its status changes. The notify status change join point over-
laps with signal status change (blackboard style) and they should be
reconciled. The query source, select source and the activate source
join points (blackboard style) are not necessary in the reactive
coordination style because the information between the Reac-
tion_TS and the agent are exchanged by means of data stored
in the Data_TS component.

4.2. Architecture-level pointcuts

Architecture-level pointcuts select join points that are relevant
to the composition of aspects at the architectural level. Table 4 pre-
sents style-based pointcuts for the Coordination concern. These
pointcuts select join points of interest based on the semantics of
blackboard and reflective blackboard styles. For instance, the
change coordination status pointcut, associated with the blackboard
style, matches join points in which a knowledge source updates the

Blackboard Reflection Reflective blackboard
Inspect blackboard Inspect blackboard
Update blackboard Update blackboard
Query source, select source, activate source -

Signal status change Reification reification (reconciled)

Metaobject call
Adaptation

Metaobject call
Adaptation

A. Molesini et al./ The Journal of Systems and Software 83 (2010) 711-722 717

Table 3
Reactive Coordination’s join point model.

Blackboard Reactive coordination

Inspect blackboard Inspect blackboard

Update blackboard Update blackboard

Query source, select source, activate source -

Signal status change notify status change (reconciled)
Data modification
Behavior changing

blackboard or the blackboard notifies its status changes by means
of a particular event.

Pointcuts for error handling select points where failures can be
observed: the coordination exception pointcut matches points of
possible failures in coordination; the data storing exception point-
cut matches points of possible failures in the data storing; the data
reading exception pointcut matches points of possible failures in the
data reading; the communication exception pointcut matches points
of possible failures in communication. Pointcuts for Security spec-
ify points where security is an issue of concern: the data secure
storing pointcut matches points where the the data must be stored
in a secure way; the data secure reading pointcut matches points
where the data must be read in a secure way.

Fig. 5 presents an example in Aspectual ACME in which a syn-
tax-based pointcut is used for selecting the points for composing
the Coordination concern, represented by the Coordinator com-
ponent. The pointcut matches components with a port named
inspectBB. The coord connector describes the interaction between
Coordinator and the components that will be coordinated
(PC_Chair and reviewers Revl, Rev2 and Rev3). The glue clause
specifies that the crosscutting concern (source) affects the base
(sink) after reaching the selected join points. The Attachments
block provides the bindings: the readCoordInfo port of Coordi-
nator is connected to every port named inspectBB, regardless of
components’ name (denoted by the * wildcard).

5. Analysis: AO vs. non-AQO architectures

This section presents both the measurement procedures and
data analysis. We have used classical evaluation indicators and
procedures to analyze the stability of the CMS architectures under
assessment (Section 2.1), as described in Section 5.1. The analysis
was performed based on a set of changes (Section 5.2) and accord-
ing to two different perspectives.

First, we have analyzed the data to compare the stability of non-
aspect-oriented and aspect-oriented software architectures (Sec-
tion 5.3). Following this perspective, we have also analysed which
particular types of changes or architecture characteristics led to a
higher degree of instability in non-aspect-oriented or aspect-ori-
ented software architectures. In particular, we have examined
the instabilities in the architectural composition descriptions in
both non-AO and AO architectures (Section 5.4).

Second, we have disregarded the non-AO software architectures
and focused on analysing stability-related phenomena observed in

Table 4
Style-based pointcuts for coordination.

aspect-oriented software architectures based on different styles.
For instance, we have tried to answer questions, such as: (i) Do
richer joinpoint models lead to more stable aspect-oriented archi-
tectures?, and (ii) What are the aspectual composition characteris-
tics that led to more instabilities? This second step of our analysis
is described in Section 6.

5.1. Measurement procedures

We have used a metrics suite to support the architecture sta-
bility assessment across the releases of all the non-AO and AO
versions of the CMS system. The suite is composed of metrics
for quantifying change propagation, including the number of
components added and changed, and connectors added and
changed. We have also counted the number of bindings added
or changed in the non-AO architectures, and the number of
pointcuts added or changed in the AO architectures. The purpose
of using these measures is to assess the change effects, when
implementing the various modification scenarios. The higher
the number of changes, higher is the probability of architectural
ripple effects manifesting. In addition, change impact metrics en-
able us to draw paradigm-independent quantitative assessments
of both AO and non-AO architectures generated. Such change
propagation metrics are impartial in the sense they also help
to capture potential side effects caused by the aspectual decom-
positions in the presence of different types of architectural
modifications.

5.2. Change scenarios

In order to perform the stability measurements, a set of eight
change scenarios have been applied to all the non-AO and AO
architecture versions of the CMS system. We have collected the
results counting the tally of new elements and the ones that suf-
fered some change impact. The selected change scenarios are
representative of typical types of architecturally-relevant
changes we have observed in CMS releases. They are also varied
in terms of types of modifications performed. For instance, we
have applied fine-grained and coarse-grained changes involving
both crosscutting and non-crosscutting concerns. Such changes
were carried out in both the non-AO and AO architectures in or-
der to measure their architecture stability. The purpose of the
heterogeneous change scenarios was to expose the non-AO and
AO architectures to recurring architecturally-relevant mainte-
nance tasks.

The list of the scenarios is as follows: (S1) introduction of
sub-committees and vice-chairs, (S2) introduction of the external
reviewers, (S3) refinement of security constraints, (S4) introduc-
tion of new coordination protocols, (S5) improvement in the
error handling strategies, (S6) introduction of new organizational
rules and changes in the existing rules, (S7) evolution in the
agents’ capabilities, and (S8) introduction of a new paper assign-
ment strategy. The main target of scenarios S1, S2, S6-S8 were
non-crosscutting concerns, while the others were crosscutting
concerns.

Style Pointcuts

Join point types

Blackboard
Read coordination info

Invoke coordination source

Reflective blackboard Reify coordination
Read coordination info

Change coordination data

Change coordination status

Update blackboard, signal status change
Inspect blackboard

Select source, activate source

Update blackboard, reification

Inspect blackboard

Update blackboard metaobject call, adaptation

718 A. Molesini et al./The Journal of Systems and Software 83 (2010) 711-722

Family BlackboardFam
extends SharedDataFam with {
Component Type BB
extends SharedDataT with {
Ports inspect, update : p_provide ... };
Component Type KS = {
Ports inspectBB, updateBB : p_use ... };
Component Type Control = { ... };

}

System CMS : BlackboardFam =
new BlackboardFam extended with {
Component PC_Chair: KS;
Component Rev1, Rev2, Rev3: KS;

* Coordination Crosscutting Concern =\
Component Coordinator = {
Port changeCoordStatus: ... ;
Port readCoordInfo: ... ;
Port invokeCoordSource: ... ; };
Connector coord = {
crosscuttingRole source; baseRole sink;
glue source after sink; };
* Pointcut description - aspectual bindings \
Attachments {
Coordinator.readCoordInfo to coord.source;
coord.sink to x.inspectBB;

L)
}

Fig. 5. Syntax-based composition for coordination in the blackboard design for
CMS.

5.3. Stability analysis: AO vs. non-AO architectures

This section reports the experimental results of the measure-
ment process. The discussion here focuses on the most interesting
results, while the raw data and exhaustive result descriptions can
be found at Chavez et al. (2007). Fig. 6 reports the change propaga-
tion measures of the Reactive Coordination (RC) and Stigmergic
Coordination (SC) architectures through all the releases generated
after each scenario. The graphic contrasts the outcomes of the non-
AO and AO versions for both these stylistic decompositions. The
number of changes is shown in percentage values. The graphic con-
centrates on the number of components and connectors changed
because they have captured significant differences through the
scenarios; also, new components and connectors are added only
in the first two scenarios and no major differences were observed.

5.3.1. Non-AO architecture fragilities

AO architectures were sensibly more stable when the main fo-
cus of a change was a crosscutting concern. This observation was
consistently visible through measurements gathered from the
CMS releases generated in scenarios 3 and 4. Even though Fig. 6
shows similar results for AO and non-AO designs, the AO architec-
tures generally require more new components for realizing a
change while the non-AO architectures require existing compo-
nents to be modified more extensively for the same change. This
finding shows that the AO architecture satisfies more closely the

@ 100% o

ﬂc’ 80%

c °

[=]

g- 60%

o

O 40% A

T

Q

2 20% -

©

S 0%

1 2 3 4 5 6 7 8

scenarios

—e—RC non-AO —a— RC AO —a— SC non-AO —x—SC AO

100%

4

2 80% -

3}

[}

S 60%

8

o 40%

>

c 20% A

©

K=

° 0% T T T T T T T

1 2 3 4 5 6 7 8
scenarios

—e—RC non-AO —8—RC AO ——SC non AO —x—SC AO

Fig. 6. Change propagation measures.

desirable open-closed principle (Meyer, 1988) in the presence of
evolving crosscutting concerns. In other words, AO architectures
are more open to extensions of modules realising crosscutting con-
cerns and closed to modifications.

The only exception was the scenario 5 when global exception
handling strategies were the target of the alterations. All the com-
ponents needed to be changed in both AO and non-AO versions.
This occurred because exception declarations in the CMS architec-
tures, whether aspectual or not, are defined in interfaces of all the
components. For instance, a network recovery protocol must sup-
port communication failure exceptions while a re-coordination
protocol must support coordination failure exceptions. The intrin-
sic nature of the change in S5 required that exception declarations
needed to be all changed so that proper exceptional information
was being propagated throughout the interface boundaries. For
example, the new error handling policy took into account time-
out issues and internal component information and it needed to
be propagated together with the exceptions throughout all the sys-
tem layers.

5.3.2. AO architecture fragilities

Interestingly, we have observed that non-AO architectures
tended to be more stable when the main focus of a change was a
non-crosscutting concern. In fact, ripple effects were observed in
the AO architectures through scenarios 2, 7 and 8; they comprise
three out of five scenarios where non-crosscutting concerns are
the main change target (Fig. 6). It is also important to highlight that
the superiority of non-AO architectures was independent of stylis-
tic choices (Section 3.1), join point models (Section 4.1), and types
of changes (Section 5.2) - whether coarse-grained or fine-grained.
This finding somehow reinforces results observed in an implemen-
tation-level empirical study that we have recently conducted
Greenwood (2007). However our stability analysis in the previous
study was not carried out at the architectural level and the target
application was realizing an N-Tier software architecture.

We have observed that the main reason for such ripple effects is
that widely-scoped crosscutting concerns tend to naturally affect
the same join points related to components and connectors realizing

A. Molesini et al./ The Journal of Systems and Software 83 (2010) 711-722 719

non-crosscutting concerns. Hence, when changing the later ones, a
channel of changes tends to also traverse the specification of the
components and connectors in the AO architecture versions. There
were cases where pointcuts related to exception handling, coordina-
tion, and security all shared the same join points.

5.4. Composition-level instabilities

5.4.1. Conventional bindings vs. pointcuts

Figs. 7-9 report the composition-level measurements, i.e. point-
cut-level change measures in AO architectures and binding-level
change measures in non-AO architectures. We concentrated again
only on the changed pointcuts and bindings because the addition
metrics did not present significant differences through most of
the scenarios. We have considered that significant ripple effects oc-
curred when the number of pointcuts or bindings changed was
higher than two. As a result, pointcuts were more stable than con-
ventional bindings in the blackboard architecture (Fig. 7). Major
instabilities of coordination-specific bindings were observed in
three scenarios (4, 6 and 8) against only one major coordination
pointcut stability (scenario 7). A security-related instability case
(scenario 5) was also observed in the non-AO blackboard version
of CMS. More instabilities were observed in the exception handling
bindings in the AO versions than in the non-AO versions for the
reasons mentioned above. They also needed to be changed when
the focus of a change is not exception handling. This finding was
also detected in the other styles (Figs. 8 and 9).

5.4.2. Stylistic compositions might ameliorate crosscutting

It is often the case that the combination of stylistic rules are
performed in order to produce hybrid architectures that improve
the satisfaction of multiple system requirements. Composition of
styles might ameliorate or eliminate the presence of crosscutting
in non-AO architectures, sometimes more effectively than AO
architectures. For instance, reactive coordination architectures fall
in this scenario for the security concern; it was helpful to modu-
larly capture certain security policies associated with illegal acces-
ses to the blackboard. As a consequence, the crosscutting nature of
security was reduced. In fact, only one ripple effect in scenario 7 is
shown in Fig. 9. However, the non-AO version was still more supe-

5
]
3 4
L
£
2
? 2
=)
8
K= 14
o

0 T T —K T T T T

1 2 3 4 5 6 7 8
scenarios
—— Coordination —a— Error handling —a— Security

(2]

c:n 6

5 51

£ 4

K]

3 5]

27

Sotlw & L N : :
o

1 2 3 4 5 6 7 8
scenarios

—4&— Coordination—#— Error handling—a&— Security

Fig. 7. Changed AO (top) and non-AO (bottom) bindings for BBS.

6
2
S 54 '_./I—I—I—I\-/l
o
o2
£ 4
o
Q 3
°
S 2
8
< 14
o

0 T T T T T T T

1 2 3 4 5 6 7 8
scenarios
—&— Coordination —a— Error Handling —a— Security
6

changed bindings
w

0 T T T ——h— T T
1 2 3 4 5 6 7 8
scenarios

|+Coordination —a— Error handling —a— Security

Fig. 8. Changed AO (top) and non-AO (bottom) bindings for RBBS.

P
5
O 41
2
£
o 3
=%
T 2;
o
ERE
S

0 T T T ——hk— T T

1 2 3 4 5 6 7 8
scenarios
—&— Coordination—&— Error handling—a&— Security
6

changed bindings
w

2 4
14
0 T T T — T T
1 2 3 4 5 6 7 8
scenarios

| —a&— Coordination —a— Error Handling —a— Security

Fig. 9. Changed AO (top) and non-AO (bottom) bindings for RCS.

rior in this particular case. The reason is that aspect-oriented soft-
ware architectures have shown to be more effective for cases that
require finer-grained composition mechanisms. On the other hand,
the specific stylistic compositions in the non-AO reactive coordina-
tion architectures were more effective for addressing coordination
(Fig. 9).

6. Analysis: characterizing stable aspect-oriented architectures

This section presents a more detailed analysis of potential fac-
tors that led to the beneficial or harmful use of aspect-oriented

720 A. Molesini et al./The Journal of Systems and Software 83 (2010) 711-722

composition mechanisms through the different stylistic architec-
ture decompositions.

6.1. Do richer join point models increase architecture stability?

Hybrid architectural styles, such as reflective blackboard and
stigmergic coordination, offer richer join point models in the sense
they expose more join point types to be used in aspectual bindings
(Section 4.2). This means that software architects have more pow-
erful means to describe aspectual compositions and, therefore,
more opportunities to modularly capture intricate crosscutting
concerns. For instance, AO reflective blackboard architectures can
include aspectual bindings at certain points not available in as-
pect-oriented blackboard architectures. In addition to the black-
board-specific join point types (Table 1), aspects in reflective
blackboard architectures can also be bound at meta-level events,
including reification, metaobject call, and adaptation (Table 2).

Given the higher expressiveness of aspect-oriented hybrid
architectures, someone could hypothesize such architectural de-
signs tend to be more stable than those offering limited types of
join points. However, we have observed that richer join point mod-
els do not necessarily lead to more stable architectures (Section
5.4). In certain circumstances, AO blackboard architectures were
visibly more stable than AO reflective blackboards and AO stigmer-
gic architectures. Fig. 10 shows that the number of changes in con-
ventional components and conventional connectors were
consistently lower in most releases of the AO blackboard architec-
tures. The only evident exception was the seventh release, when
agent capabilities were modified. This reinforces the fact that soft-
ware architects need to carefully consider the selection of more
simplistic AO architectural decompositions, especially when com-
position flexibility is not an overarching design goal.

6.2. What are harmful aspectual composition characteristics?

We have observed two main aspectual composition factors that
led to the manifestation of architectural instabilities. The first fac-
tor was the definition of “partial” aspectual compositions, such as
in the exception handling case discussed in Section 5.3. Exception
handling was only partially aspectized in the sense that exception
detection was left as a responsibility assigned to the non-aspectual
components; only the exception handlers were implemented by
the aspectual components. As a result, only pointcuts for exception
handling were created. In such cases, certain changes related to the
addition of new exceptions required often modifications in both
aspectual and non-aspectual components. The key problem was
that strategies for exception detection and handling sometimes
are strongly coupled.

50

The second and more influencing factor was higher density of
aspectual components affecting the same join point. Such a high
density causes a strong, albeit indirect, coupling amongst all the
aspects involved. As a consequence, when a change implied a mod-
ification or removal of that join point, a number of pointcuts and
interfaces of the aspectual components need to be modified.
Although less problematic, such a strong inter-aspect coupling also
caused some side effects when a change affected one of the in-
volved aspectual components.

The observation above led us to infer that the sharing of join
points by different architectural aspects should be carefully ap-
plied by architects and designers. We have noticed that such multi-
ple aspectual extensions to the same behaviour entail similar
ripple effect problems observed in large specialisation trees and
multiple inheritance trees in OO designs (Casais, 1995). However,
when designing AO architectures, designers can anticipate high
density of shared join points and avoid it whenever it is possible.
For instance, in order to not be detrimental to design stability,
architects might decide for prioritizing the “aspectization” of a
subset of crosscutting concerns that do not interact much with
each other. In fact, in previous implementation-level studies, we
have observed that high degree of concern overlaps might be
harmful to the software stability (Greenwood, 2007; Figueiredo
et al., 2008).

7. Related work and study limitations

This section presents a comparison with related work (Section
7.1) and discusses study constraints and imperfections (Section
7.2).

7.1. Comparison with related work

The literature on architectural aspects provides some examples
of classical aspects at architecture design, such as error handling,
persistence, distribution, and coordination (Garcia et al., 2006; Na-
vasa et al., 2005; Pinto et al., 2005; Quintero et al., 2005). However,
there is not much discussion on the impact of AO compositions on
the architectural stability, thereby giving the impression that those
concerns should be always aspectized. There is little related work
focussing either on the quantitative assessment of AO architectural
solutions in general, or on the empirical investigation about the de-
sign stability of AO decompositions (Greenwood, 2007). Substan-
tial empirical evidence is missing even for crosscutting concerns
that software engineers face every day, such as persistence, distri-
bution and error handling.

As noticed from our observation in Section 5.4, the kind of
decomposition supported by different conventional styles may

45
40
35
30
251
20
15
10

g ~_

changed connectors

1 2 3 4

5 6 7 8

|+BB —=—RBB ——RC ——SC

Fig. 10. Changed conventional connectors.

A. Molesini et al./The Journal of Systems and Software 83 (2010) 711-722 721

favor the clean modularization of some concerns while others may
be not well-modularized. In fact, styles have directly interfered
with the nature of the crosscutting concerns at the architectural
description of the CMS system (Figs. 7-9). The stability of the
aspectual compositions (i.e. based on pointcuts) were observed
to be style-dependent, such as coordination. The chosen styles in
different CMS versions emphasized the separation of some con-
cerns of the problem and suppressed others. Hence, some concerns
are expected to be well localized within specific kinds of modular
units defined by the style, while others are expected to crosscut
their boundaries. For instance, coordination was not crosscutting
in architectures following the reflective blackboard and reactive
coordination styles. Additional studies should be carried out to
produce a broader catalogue of style-specific crosscutting concerns
for supporting software architects.

7.2. Study constraints and imperfections

Even though this study fully satisfies our initial goal of provid-
ing a first exploratory investigation on the impact of evolving AO
architectures on design stability, our procedures certainly have
some limitations. These limitations will contribute to further
explorations using other experimental procedures and systems as
targets. For instance, our analyses are restricted to the instances
of architectural styles used in different CMS releases. Hence, next
studies should assess the stability of AO architectures when com-
bined with the application of other styles not investigated in this
study. Further studies could also investigate the stability impact
of aspectizing other crosscutting concerns not investigated here,
such as persistence and distribution. In our previous studies, we
have analyzed the stability of such crosscutting concerns but from
the implementation point of view only.

Second, our analyses concentrate on the history of architecture
alternatives for one software system providing, therefore, a single
point of observation. However, our target case study is a represen-
tative choice of a number of blackboard-based information sys-
tems for several reasons. It addresses recurring characteristics
and crosscutting concerns for such systems, such as distribution,
error handling, security, and coordination. In addition, the analysed
changes are heterogeneous and capture typical change requests
within software projects from this nature. More importantly, the
design of the CMS system realizes best design practices, which
have being systematically being enhanced through the years (Sec-
tion 2). It provides evidence that the observerd negative changes in
AO and non-AO architectures (Sections 5 and 6) are not merely a
matter of lack of systematic design choices.

8. Conclusions

The transfer of aspect-oriented technologies to the mainstream
of the software development is largely dependent on our ability to
empirically understand their positive and negative effects on de-
sign stability and other qualities. Stability occupies a pivotal posi-
tion in the design of good system architectures. Building stable
architectures is a challenging task mainly because the architects
need to reason and make decisions with respect to a number of
architecturally-relevant crosscutting concerns. In this way, the
main contribution of our work was to systematically analyze to
what extent AO architectures are stable in the presence of different
types of changes.

We have adopted the conference management system as a run-
ning example for assessing various facets of design stability in
non-AO and AO architectural decompositions. This included the
analysis of three crosscutting concerns (Section 3.2) for this sys-
tem. One of the main outcomes was that the AO architectures

tended to have a more stable design particularly when a change
targeted a crosscutting concern - the AO architectures tended to
require less invasive changes. However, they did not scale well
when changes targeted non-crosscutting concerns. Ripple effects
were often observed in pointcut specifications. As observed in
our study, one of the potential reasons is that multiple pointcuts,
defined to capture different widely-scoped aspects, commonly
share join points associated with evolving base elements. Hence,
the aspects themselves are tightly coupled to each other via vola-
tile architectural elements. If these elements are changed or re-
moved, they tend to cause instabilities in the AO architecture
alternatives, thereby confirming the outcome of a recent empirical
study targeting the use of aspects for framework architecture com-
position (Lobato et al., 2008).

Our study outcomes associated with exception handling aspects
diverged from our previous observations in an evolving N-Tier
architecture (Greenwood, 2007). In the previous investigation, the
AO architecture has shown to be more stable in the presence of
exception handling aspects. In the CMS case, we have detected
the contrary: a considerable number of changes manifested in the
exception handling pointcuts. The reason was that the exception-
related changes in the CMS releases involved the incorporation
and change of exception interfaces (Section 5.3); in our previous
studies, the changes were restricted to the exception handlers mod-
ularized by the exception handling aspects. Also, a reduction of
instabilities was observed in the non-aspectual decompositions
when hybrid architectural styles were applied. Finally, against com-
mon intuition, we have observed that pointcuts with higher degree
of quantification had no impact on the (in)stability of aspect-ori-
ented software architectures.

Acknowledgements

This work is supported in part by the European Commission
Grant IST-33710 - Aspect-Oriented, Model-Driven Product Line
Engineering (AMPLE), Grant IST-2-004349: European Network of
Excellence on Aspect-Oriented Software Development (AOSD-Eur-
ope), Grant 486125/2007-6: Brazilian Council for Scientific and
Technological Development(CNPq), and Grant 219/2008: Fundagdo
de Amparo a Pesquisa do Estado da Bahia (Fapesb).

References

Bahsoon, R., Emmerich, W., 2004. Evaluating architectural stability with real
options theory. In: Proceedings of the 20th IEEE International Conference on
Software Maintenance, 2004, pp. 443-447.

Baldwin, C.Y., Clark, K.B., 1999. Design Rules: The Power of Modularity, vol. 1. MIT
Press, Cambridge, MA, USA.

Batista, T. et al., 2006. Reflections on architectural connection: seven issues on
aspects and ADLs. In: Early Aspects at ICSE 06, ACM Press, 2006, pp. 3-10.
doi:<http://doi.acm.org/10.1145/1137639.1137642>.

Buschmann, F. et al.,, 1996. Pattern-Oriented Software Architecture: A System of
Patterns, vol. 1. Wiley.

Casais, E., 1995. Managing class evolution in oo systems. OO Softw. Compos., 201-
244.

Chavez, C. et al., 2007. Empirical studies on architectural composition. <http://
www.dcc.ufba.br/~flach/Studies/>.

Chavez, C., Garcia, A., Batista, T., Oliveira, M., Sant’Anna, C., Rashid, A., 2009.
Composing architectural aspects based on style semantics. In: Proceedings of
the ACM Interantional Conference on Aspect-Oriented Software Development
(AOSD), Charlottesville, USA, 2009, pp. 111-122.

Chitchyan, R. et al., 2005. Survey of aspect-oriented analysis and design approaches.
<http://www.aosd-europe.net/documents/index.htm/analys.pdf>.

Ciancarini, P. et al., 1996. A case study in coordination: conference management on
internet. <ftp://ftp.cs.unibo.it/pub/cianca/coordina.ps.gz>.

Clements, P. et al., 2007. Documenting Software Architectures - Views and Beyond,
SEI Series in Software Engineering, 9th Printing, Addison-Wesley.

Figueiredo, E. et al., 2008. Evolving software product lines with aspects: an
empirical study on design stability. In: ICSE'08: Proceedings of the 30th
International Conference on Software Engineering, ACM, New York, NY, USA, pp.
261-270. doi:<http://doi.acm.org/10.1145/1368088.1368124>.

Filho, F. et al., 2006. Exceptions and aspects: the devil is in the details. In: Young, M.
et al. (Eds.), SIGSOFT FSE 2005: Proceedings. ACM, pp. 152-162.

http://doi.acm.org/10.1145/1137639.1137642
http://www.dcc.ufba.br/~flach/Studies/
http://www.dcc.ufba.br/~flach/Studies/
http://www.aosd-europe.net/documents/index.htm/analys.pdf
http://doi.acm.org/10.1145/1368088.1368124

722 A. Molesini et al./The Journal of Systems and Software 83 (2010) 711-722

Filman, R. et al. (Eds.), 2005. Aspect-Oriented Software Development. Addison-
Wesley, Boston.

Garcia, A. et al., 2008. Taming heterogeneous agent architectures with aspects.
Communications of the ACM 51 (5), 75-81.

Garcia, A. et al., 2004. Aspectizing multi-agent systems: from architecture to
implementation. In: SELMAS 2004: Proceedings, pp. 121-143.

Garcia, A. et al., 2006. On the modular representation of architectural aspects. In:
Gruhn, V., et al. (Eds.), EWSA 2006: Proceedings, LNCS, vol. 4344, Springer, 2006,
pp. 82-97.

Garlan, D., Monroe, R.T., Wile, D., 1997. ACME: An architecture description
interchange language. In: CASCON'97: Proceedings, Toronto, Ontario, pp. 169-
183.

Greenwood, P. et al., 2007. On the impact of aspectual decompositions on design
stability: an empirical study. In: Ernst, E. (Ed.), Proceedings of the 21st European
Conference ECOOP, Berlin, Germany, July 30-August 3, 2007, Lecture Notes in
Computer Science, vol. 4609, Springer, pp. 176-200

Jazayeri, M., 2002. On architectural stability and evolution. In: Ada-Europe’02:
Proceedings of the Seventh Ada-Europe International Conference on Reliable
Software Technologies, Springer-Verlag, London, UK, pp. 13-23.

Kiczales, G. et al., 2001. Getting started with Aspect]. Com. ACM 44 (10), 59-65.

Lobato, C., Garcia, A., Kulesza, U., Staa, A., Lucena, C., 2008. Evolving and composing
frameworks with aspects: the mobigrid case. In: Seventh IEEE International
Conference on Composition-Based Software Systems (ICCBSS), Madrid, Spain,
2008, pp. 25-29.

Mamei, M. et al., 2005. Programming stigmergic coordination with the TOTA
middleware. In: Dignum, F., et al. (Eds.), AAMAS 2004: Proceedings, ACM Press,
pp. 415-422.

Meyer, B., 1988. Object-Oriented Software Construction. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

Molesini, A., Garcia, A., Chavez, C., Batista, T., 2007. On the interplay of crosscutting
and MAS-specific styles, In: Oquendo, F. (Ed.), ECSA 2007: Proceedings, LNCS,
vol. 4758, Springer, 2007, pp. 317-320.

Molesini, A., Garcia, A., Chavez, C., Batista, T., 2008. On the quantitative analysis of
architecture stability in aspectual decomposition. In: Kruchten, P., Garlan, D.,
Woods, E. (Eds.), Proceedings of Seventh IEEE/IFIP Working Conference on
Software Architecture (WICSA 2008), IEEE Computer Society, Los Alamitos, CA
90720-1314, 2008, pp. 29-38, Seventh IEEE/IFIP Working Conference on
Software Architecture (WICSA 2008), February 18-22, 2008, Vancouver, BC,
Canada. doi: <http://doi.ieeecomputersociety.org/10.1109/WICSA.2008.26>.

Navasa, A. et al.,, 2005. Aspect modelling at architecture design. In: Morrison, R.,
et al. (Eds.), EWSA 2005: Proceedings, LNCS, vol. 3527, Springer, 2005, pp. 41-
58.

Nii, P., 1986. The blackboard model of problem solving. Al Mag. 7 (2), 38-53.

Pinto, M. et al., 2005. A dynamic component and aspect-oriented platform. Comput.
J. 48 (4), 401-420.

Quintero, C. et al., 2005. Architectural aspects of architectural aspects. In: Morrison,
R., et al. (Eds.), EWSA 2005: Proceedings, LNCS, vol. 3527, Springer, 2005, pp.
247-262.

Sant’Anna, C., Lobato, C., Kulesza, U., Garcia, A., Chavez, C., Pereira de Lucena, CJ.,
2008. On the modularity assessment of aspect-oriented multiagent
architectures: a quantitative study. International Journal on Agent-Oriented
Software Engineering (IJAOSE) 2 (1), 34-61.

Shaw, M. et al., 1996. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall.

Silva, O. et al,, 2002. The reflective blackboard pattern: architecting large multi-
agent systems. In: Garcia, A, et al. (Eds.), SELMAS 2002, LNCS, vol. 2603,
Springer, pp. 73-93.

Soares, S. et al., 2002. Implementing distribution and persistence aspects with
Aspect]. In: OOPSLA 2002: Proceedings, ACM Press, pp. 174-190. doi:<http://
doi.acm.org/10.1145/582419.582437>.

TuCSoN at Source Forge. <http://tucson.sourceforge.net>.

Yau, S. et al., 1985. Design stability measures for software maintenance. IEEE Trans.
Software Eng. 11 (9), 849-856.

Ambra Molesini has a research grant at DEIS (Department of Electronic, Computer
Science and Systems) of the Alma Mater Studiorum - Universita di Bologna. She
received her Ph.D and M.Sc. cum laude both from the Alma Mater respectively in
2008 and 2004. Her research is focused on agents, coordination, security, software
engineering in general, and agent-oriented software engineering (AOSE) in
particular.

Alessandro Garcia is an Assistant Professor at the Informatics Department of the
Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil. He completed his
Ph.D. research studies in March 2004 at PUC-Rio (Brazil) in cooperation with Uni-
versity of Waterloo (Canada). He received his M.Sc. degree in Computer Science
from Campinas State University (UNICAMP), Brazil. His research interests include
software architecture, aspect-oriented software development, exception handling,
empirical assessment of contemporary modularization techniques, and multiagent
systems.

Christina Chavez is an Associate Professor at the Computer Science Department of
the Federal University of Bahia (UFBA), Brazil. She received her Ph.D. degree in
Computer Science from the Pontifical Catholic University of Rio de Janeiro (PUC-
Rio), Brazil, and her M.Sc. degree in Computer Science from Campinas State Uni-
versity (UNICAMP), Brazil. Her current research interests include software design,
software evolution and aspect-oriented software development.

Thais Batista is an Associate Professor at the Computer Science Department of the
Federal University of Rio Grande do Norte (UFRN), Brazil. She received her Ph.D. and
M.Sc. degrees in Computer Science from the Pontifical Catholic University of Rio de
Janeiro (PUC-Rio), Brazil. Her current research interests include software architec-
ture, aspect-oriented development, and distributed systems.

http://doi.ieeecomputersociety.org/10.1109/WICSA.2008.26
http://doi.acm.org/10.1145/582419.582437
http://doi.acm.org/10.1145/582419.582437
http://tucson.sourceforge.net

	Stability assessment of aspect-oriented software architectures: A quantitative study
	Introduction
	Study settings
	Methodological procedures
	The case study
	Heterogeneous architecture designs
	Analysis steps

	Conference Management System

	Architectural designs for the CMS
	Architectural styles
	Blackboard style
	Reflective blackboard style
	Reactive coordination style
	Stigmergic coordination style

	Architectural crosscutting concerns
	Coordination
	Error handling
	Security

	Aspect-oriented software architectures
	Style-specific join point models
	Blackboard
	Reflective blackboard
	Reactive coordination style

	Architecture-level pointcuts

	Analysis: AO vs. non-AO architectures
	Measurement procedures
	Change scenarios
	Stability analysis: AO vs. non-AO architectures
	Non-AO architecture fragilities
	AO architecture fragilities

	Composition-level instabilities
	Conventional bindings vs. pointcuts
	Stylistic compositions might ameliorate crosscutting

	Analysis: characterizing stable aspect-oriented architectures
	Do richer join point models increase architecture stability?
	What are harmful aspectual composition characteristics?

	Related work and study limitations
	Comparison with related work
	Study constraints and imperfections

	Conclusions
	Acknowledgements
	References

