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In thermal field dynamics, thermal states are obtained from restrictions of vacuum
states on a doubled field algebra. It is shown that the suitably doubled Fock repre-
sentations of the Heisenberg algebra do not need to be introduced by hand but can
be canonically handed down from deformations of the extended Heisenberg bial-
gebra. No artificial redefinitions of fields are necessary to obtain the thermal rep-
resentations and the case of arbitrary dimension is considered from the beginning.
Our results support a possibly fundamental role of bialgebra structures in defining
a general framework for thermal field dynamics. 1®97 American Institute of
Physics[S0022-24887)02010-7

I. INTRODUCTION

The notion of a doubling structure is present in every theory describing thermal phenomena.
This doubling, however, is most transparent in the approach known as thermal field dynamics
(TFD). Thermal field dynamicsis based on the idea that thermal states of a quantum system,
described by the field algebfacan be given as restrictions of vacuum states of a doubled algebra
of observableA®A. The doubling ofA is usually given by the so-called tilde conjugation rules
which can be thought of as a mappingAEA®1 into I® A:

(ab)"=ab, (Aa+ub)"=\*a+u*b, (a) =a,
(a")~=a",
[vacuum ™ =|vacuuny,
with a,be A and\,u e C (the complex numbeys

Such a dual conjugation was proposed as a consequence of the physical analysis of the
vacuum-condensation phenomenon, associated with the presence of the unitarily inequivalent
vacua of systems with infinite degrees of freedom. This inequivalence is described properly by a
Bogoliubov transformation of basic operators/of

The first attempt to put TFD on an axiomatic basis appeared in Ojima’sAtaed on the
modular(Tomita—Takesakiconjugation ofC* -algebras. Such a modular conjugation realizes an
omnipresent dual conjugation by switching the algefrand its commutanf’ in the thermal
(equilibrium) representation.

0022-2488/97/38(10)/4971/9/$10.00
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However the explicit splitting oA®A into A®1 andI®A is not necessary. For all intended
purposes a doubling fromA to A®A without a specification of two copies @&k in AQA is
sufficient and one can therefore in all of the following drop the tilde conjugation rules, retaining
only the idea of a doubling.

Note that already at this point the present treatment departs from the different and differently
motivated approach to thermal field dynamics based on the mo@idanita—Takesakiconjuga-
tion as given by 1.Ojim&.

Given a vacuum state; on A one can introduce a doubling, :A—A®A such that the
desired thermal state, is given by

0,=(0;®w;)°d,. 1

That this is indeed the case is shown in Section Il which also reviews basic facts on the
Heisenberg algebra and its exponentiation, the Weyl algebra, mostly omitting proofs. This scheme
of producing thermal states has in this setting no deeper justification except that it works.

However, there are two more general points of view.

First, the doubling of the algebra of observables characteristic for thermal field dynamics is
just an example of taking tensor products of representations of the field alyelrgeneral and
systematic way of taking tensor products of representations is giveh,isf equipped with a
bialgebra structurdso it would be nice to have one on our algebra.

Second, a new possibility to study the thermal problem in an algebraic setting has emerged
with the works of Celeghini, Vitiello and their co-workers by exploring quantum deformations of
Weyl-HeisenberdWH) in connection with coherent and squeezed states, and quantum dissipa-
tion. The fact that one can produce squeezed states and thermal states by deformations of the
extended Weyl algebra has been shown using one-dimensional ex4ifales the use of the
coalgebra structure as the doubling in thermal field theory was discussed in Refs. 7—9. In particu-
lar, a coherent state representation has been exploited and applications to lattice quantum mechan-
ics have been suggesteiThese works on g-groups and thermal phenomena have set the question
of how fundamental the doubling structure for the thermal systems is. A preliminary answer to this
question can be given through the notion of Lie symmetfids. that approach a part of the
structure of the theory is deduced from a bialgeta@entually produced from a symmetry Lie
algebra®!} with the rest given by the requirement of a Fock structure. The Fock structure itself
can, however, also be cast into a bialgebra form by using the extended Heisenberg @gebra
Section Il)) thus allowing an axiomatic setting of the theory starting only from a bialgebra.

The present treatment is a further development of these results. It deals with the case of a
higher dimensional phase space in a rather covariant way. The results are then, in particular, in the
right form to be used, e.g., for the description of quantum fields on a curved spacetime background
where there is no preferred Hamiltonian to split the phase space into separate modes.

Both points of view presented above ask for a bialgebra. Unfortunately, the Heisenberg
algebraA cannot be turned into one as shown in Section Ill. However, it turns out that by going
over to a slightly different algebra, the extended Heisenberg aldéboae can do away with this
problem, and there is a mapping from the extended Heisenberg algebrdo the Heisenberg
algebraA that allows one to transport interesting structures, particularly the comultiplicAtion
responsible for tensor products of representations, into the context of physical observables.

This is true even if one g-deforms the extended Heisenberg bialgebra: The deformed extended
Heisenberg algebrid, maps down onto thendeformedeisenberg algebra thus giving nothing
new for the algebra but providing us with new possible doublitigs It is these new doublings
A, coming from deformations of the extended Heisenberg algebra that allow us to express an
arbitrary quasifree state in a way similar to thermal field dynamics. This is shown in Section I
together with a discussion of the relevant deformations.

An example showing the relationship between the deformation parampetad the inverse
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temperature of the corresponding thermal state is given in Section IV. Section V contains conclu-
sions and some general remarks.

Il. THE HEISENBERG ALGEBRA AND ITS WEYL FORM

In order to set the notation it will be shown now that thermal states on a Heisenberg algebra
A can be obtained from a Fock representafiog., an irreducible representation obtainable from
a vacuumw; by the Gefand—Naimark—Segal-constructi@NS-construction, see, e.g., thatin O.
Bratteli and D.W. Robinsdr) by a suitable ad hoc doubling. The Heisenberg algebra is generated
from a symplectic vector spadeof arbitrary dimension with the symplectic foro(@®,®) by the
usual commutation relations:

d(21) Pp(22) — P(22) P(21) =it 0(21,25), 21,Z€T
or
W(z1)W(zy) =€el1P922I\W(z,+ 2,),  z1,2,€T.
Here ¢(z) are the field operators anl(z) their exponentiated Weyl form:
W(z)=¢'%?.

A vacuum statew; on the field algebra is given by a complex structutkonI'. On the Weyl
generators one has:

wy(W(z))=e~ H9zre2, )

with contractions between the relevant vectors and tensors indicated hg vacuum state is also
fully determined by its two-point function:

w3(P(21) $(2,)) = 521030072,

The thermal states to be considered are quasifree and thus correspond(ie fre@adratic
field Hamiltonians. For each quasifree state there is by the modular tigstybo—Martin—
Schwinger theoryKMS theory, see O. Bratteli and D.W. Robin$éfh) a Hamiltonian with
respect to which the state is thermal and therefore one has to show that one can produce any
quasifree state of interest by our doubled Fock representations. Any quasifree state corresponding
to a positive definite Hamiltonian can be written in the forgompare with O. Bratteli and D.W.
Robinson* p.50):

(.UX(W(Z)) — e—(1/4)Z°COtf‘(Q/2)°J00'°Z, (3)

where () is a positive definite operator arising from the diagonalization of the corresponding
HamiltonianH:*°

H=QoJoo. (4)

It is known from thermal field dynamics th& can be related to a Bogoljubov operagoon
I' anticommuting withJ by the following relation, giving an alternative parametrization of qua-
sifree states:

Q
cosh2y) = coth, )

wX(W(Z)):e*(l/4)Zocosh2X)cJomZ (6)

J. Math. Phys., Vol. 38, No. 10, October 1997
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with y satisfying
Jox=—x°J, (7
goxX=—X°0. (8
The promised doubling, is now given by the following action on the Weyl generators:
6, (W(z))=W(cosh x)z) ® W(sinh(x)z). €)

One can check now by direct calculation thgt is an algebra homomorphism and that it
produces from the doubled vacuum staigs w; the right quasifree state, :

@y =(0)® w;)°5,(W(2))

=(w3;® w;)(W(coshyz) ® W(sinhyz))
= wy(W(coshyz)) w,(W(sinhyz))
using (2)

— e—(1/4)zo coshyeJego cosh)(oze—(1/4)zo sinh y°Jege sinh yoz

by (7), (8)

=" (1/4)zo(cost?x+ sinhz)()oJoooz

by the identity coshy-+sintfy=cosh

— e—(1/4)zocosh2;(o.]oooz

But this is just the quasifree stat®) that is required.

Ill. THE EXTENDED HEISENBERG ALGEBRA AND ITS DEFORMATIONS

One would like to use a bialgebra structure on a field algebra, in particular the Heisenberg
algebraA, and by the GNS-construction a vacuum state giving a Fock representation, to
produce a new representation in which the vacuum doubled by the comultiplidatwiii be a
thermal(and thus reduciblestate.

There is, however, a problem with this straightforward idea: There is no bialgebra structure on
the Heisenberg algebra. This can be easily seen from the fact that the Heisenberg commutation
relations for the field)(z) require a commutator to be proportional to the unit of the algebra,

D (21) P(22) — P(2,) p(21) =iho(21,25)].

Now, a counite of the bialgebra structure has to vanish on commutators and has to be equal
to 1 on the unit of the algebra, which is not possible unless the proportionality constant in the
commutation relationéPlanck’s constantis zero.

To improve that, the unit of the algebra can be replaced by an abstract central eldrhent
Now it is no longer necessary for the couritto be equal tol on this central element, the
commutation relations can be considered as a Lie algebra and there exists even a Hopf algebra
structure on this extended Heisenberg algdbravhich is actually now a universal enveloping
algebra of a Lie algebr¥. To recover a meaning in the field algebra one can map the extetdsion

J. Math. Phys., Vol. 38, No. 10, October 1997
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onto the plain Heisenberg algebfa The mapAQ:A—A®A induced from the comultiplication
A:U—U®U is no longer preserving the algebra unit but it is a morphism of algebras and thus
allows a tensor product of representations.

What is gained by considering the extended Heisenberg algémahe possibility of having
an underlying bialgebra structure giving a canonical doubling on the algebra of obser#ables

Moreover, the extended Heisenberg algdbrean be deformed without changing the scheme,
thus producing new interesting doublings on the Heisenberg algebra. The useful deformations can
be found for the one-dimensional case in S. M&jahd G. Vitiello}” written in terms of annihi-
lation and creation operators. Additional information on how to obtain these algebras by contrac-
tions from semisimple ones can be found in Ref. 18.

In our case the class of possible deformations will be parametrized by a Bogoljubov operator
x on the classical phase spafeassuming that a vacuum is given by the choice of a complex
structureJ on I'. The Bogoljubov operator is characterized by anticommuting with the complex
structure as well as with the symplectic form on I":>5

JOX:—XOJ, goX= — X°O0.

Our deformations will break the manifest symplectic group symmetry of the extended Heisen-
berg algebrdJ sincey is not an invariant under these symmetries. They will be written in terms
of a set ofR-independent eigenvectofg; ,Jz}.

The deformed commutation relations are:

[d(zi),m(z)]=—i6[2H],,, (10
[¢(z),H]=0, (11
[7(z),H]=0 wheren(z):=¢(Jz) (12
and[x]xi:= Ssllnnhé()éx (13

The deformed comultiplicatiod , is:

A b(z)=d(z) @XM +e "iMe ¢(z), (14
A m(z)=m(z)0e M +e e m(z), (15)
A H=H®I+IgH. (16)

It can be checked by direct calculation that the comultiplicatiopreserves the commutation
relations and that it is coassociative:

[qus(zi)iAXﬂ-(Zi)]:_i5ij[2AXH]Xi! (17)
(A,@1)°A =184 ,)°A, . 18

The deformed commutation relatiori$0)—(12) give rise to an algebra isomorphic to the
undeformed onex=0). An isomorphism can be easily established, e.g., by rescaling the genera-
tors ¢(z) by 2H/(2HXi). In this sense only the coalgebra structure is nontrivially deformed as
can be checked by observing that the cocommutative comultiplicatipn, becomes non-
cocommutative. This point was emphasized by Celeghini, Giachetti, Sorace and Tarlini in Ref. 18.
If the Heisenberg algebra is understood as constructed from the classical phase space, i.e., to

J. Math. Phys., Vol. 38, No. 10, October 1997
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consist not only of the algebra alone but also of the inclusion map of genemténem the
classical phase space, then even the deforméti®n-(12) is nontrivial. A rescaling, e.g., ap(z)
is no longer possible without loosing the normalizationzpfvith respect to the metrideo or
changing the inclusion map.

In the Weyl form the deformed commutation relations and the comultiplication can be written
as:

U(z)V(z))=e PMxv(z)U(z), (19
A U(z)=U(e'z)eU(e *z), (20
AV(z)=V(eXz)® V(e Xz), (21)
with:
U(z):=€?%=W(z), (22
V(z):=e ™ @ =W(Jz). (23

We turn now to the canonical mappings p,, of the deformed extended Heisenberg algebra
U, and its coproducta "~ lU onto the Heisenberg algebfaand its tensor products®". It will
be required thap, p, are algebra homomorphisms and thiaas well asA, "~ 'H are mapped by
p, pninto the unitsl, 1%". In the following the generatoré(z;), m(z) will be identified with their
imagesp(¢(z)), p(m(z)).

The mapp is fully specified and it is thus tempting to sgt=p®", but thenAX”‘lH would
be mapped intm-1 instead ofl. To fix the normalization one has to set:

1

Pa(A" " b(zi)= \/ﬁ PEN(A T h(2), (29)
1

Pa(A "t r(z)) = \/ﬁ pEN(A T (Z). (25

Now p, is also fully specified. The important thing now is that the I'Tmﬁ_l:UXHUX@n
factors through the maps, p,, as can be checked on the generators. The result is a map

A MU ASASD (26)

which fills in the commutative diagram

U, —f-

Ax"‘ll ‘[Ax("“) @7

The mapA ("=1) is an algebraic homomorphism and thus allows one to take tensor products
of representations. Note, however, that due to the necessary normalmq,ﬂbri” is not a co-
multiplication.

In the casen=2, Ax(l) is our canonical doubling. If we use now this canonical doubling for
doubling a vacuum stat®, and the corresponding Fock representation, one obtains thewstate

J. Math. Phys., Vol. 38, No. 10, October 1997
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w,(U(z))=0,(W(z))

=(0;®w;)°A P (U(z))
:(O)J®(DJ) U eXi ®U eXi>>
V2 V2

— @~ (UA(U2)zeXedogoeXoz)) o = (1) (1/2)zie Xedogoe ™ Xoz;)

— o~ (VA (ze (X +e™ 2X)[2:0e0°2))

= @~ (U4 (zocoshedeooz))
and similarly:

0, (V(Z))) = 0,(W(J7)) =~ (WA5-coshaedeo=z)
By extension from the generators one gets:
wX(W( Zi)) — e7(1/4)(zi°COSh3(°J00'°Zi). (28)

But this is just the quasifree staté).

IV. AN EXAMPLE: THE HARMONIC OSCILLATOR

In the special case of a one-dimensional harmonic oscillator some particular simplifications
occur. In its two-dimensional phase spdte R? there exists a basis in which the symplectic form
o, the complex structurd and the given Bogoljubov operatgrtake the form:

0 1
0 1

‘Jabz ( -1 0) ' (30)
0

x%=(g _X). 31

This basis is unique and can be given also by geometrical considerations ys@sdJsingJ as
the imaginary unit one can now identify the phase sgaaeith the complex numbers:

r=cC. (32
The vacuum state; and the statey, obtained in(28) are then given by
w0 (W(2))=e" VI (39

w)(( W(z))= e7(1/4)cosh3(||ZH2' (34)

The Hamiltonians compatible with the complex structdifg.e., those which have a diagonaliza-
tion (4) giving the fixedJ] are determined by the matrix
10

0 1/ (35

Hap= Eﬁ(
J. Math. Phys., Vol. 38, No. 10, October 1997
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The corresponding thermal states are
("B(W( Z)) — e—(l/4)cotf'(BE/2)||zH2_ (36)

Fixing E as the energy of the harmonic oscillator and compaf8#y and (36) the stateso,
are identified with the thermal statesg, of the Hamiltonian at inverse temperatyggobtaining
the relation

BE
coth—-=cosh % 37

between the inverse temperatyBeand the deformation parametgr So, in the end, the defor-
mation parametex has a nice interpretation as a function of the inverse temperature as pointed
out in Ref. 9 and explicitly exhibited here 7).

V. CONCLUSION

It is shown that there is a class of deformations of the extended Heisenberg bialyetht
provide canonical doublings by mapping down their comultiplications on the Heisenberg algebra
A. These doublings give directly, without any redefinitions, all representations arising from qua-
sifree states by the GNS-construction. In particular, the doublings give all thermal representations
for free Hamiltonians. Our construction works clearly for any finite dimensional system and on the
level of calculus also for infinite dimensional systems. Functional analytic discussions for the
infinite dimensional case are omitted. Note, however, that at no point is unitary equivalence of
representations used and that all Bogoljubov transformations are given by symplectomorphisms on
the classical phase space. Thus no problem is expected in extending our considerations to the
infinite dimensional case.

It would be useful to know if there are deformations other than the ones used here of the
extended Heisenberg algelidalf not, then the construction becomes entirely canonical, since the
class of deformations appears to be the only choice one could make in the construction. If there are
other deformations, then it would be interesting to see the interpretation of the induced doublings
on the Heisenberg algebra arising from them.

In any case the present results show that the bialgebra structure is a logical way to approach
thermal field theory by providing both the correct results and a mathematically satisfactory general
structure.
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