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In thermal field dynamics, thermal states are obtained from restrictions of vacuum
states on a doubled field algebra. It is shown that the suitably doubled Fock repre-
sentations of the Heisenberg algebra do not need to be introduced by hand but can
be canonically handed down from deformations of the extended Heisenberg bial-
gebra. No artificial redefinitions of fields are necessary to obtain the thermal rep-
resentations and the case of arbitrary dimension is considered from the beginning.
Our results support a possibly fundamental role of bialgebra structures in defining
a general framework for thermal field dynamics. ©1997 American Institute of
Physics.@S0022-2488~97!02010-0#

I. INTRODUCTION

The notion of a doubling structure is present in every theory describing thermal pheno
This doubling, however, is most transparent in the approach known as thermal field dyn
~TFD!. Thermal field dynamics1 is based on the idea that thermal states of a quantum sys
described by the field algebraA can be given as restrictions of vacuum states of a doubled alg
of observablesA^A. The doubling ofA is usually given by the so-called tilde conjugation rul
which can be thought of as a mapping ofA>A^ 1 into 1^ A:

~ab!;5 ã b̃ , ~la1mb!;5l* ã1m* b̃ , ~ ã !;5a,

~a1!;5 ã1,

uvacuum&;5uvacuum&,

with a,bPA andl,mPC ~the complex numbers!.

Such a dual conjugation was proposed as a consequence of the physical analysis
vacuum-condensation phenomenon, associated with the presence of the unitarily inequ
vacua of systems with infinite degrees of freedom. This inequivalence is described properl
Bogoliubov transformation of basic operators ofA.

The first attempt to put TFD on an axiomatic basis appeared in Ojima’s work2 based on the
modular~Tomita–Takesaki! conjugation ofC* -algebras. Such a modular conjugation realizes
omnipresent dual conjugation by switching the algebraA and its commutantA8 in the thermal
~equilibrium! representation.
0022-2488/97/38(10)/4971/9/$10.00
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4972 Kopf, Santana, and Khanna: Thermal field dynamics and bialgebras
However the explicit splitting ofA^A into A ^ 1 and1^ A is not necessary. For all intende
purposes a doubling fromA to A^A without a specification of two copies ofA in A^A is
sufficient and one can therefore in all of the following drop the tilde conjugation rules, reta
only the idea of a doubling.

Note that already at this point the present treatment departs from the different and diffe
motivated approach to thermal field dynamics based on the modular~Tomita–Takesaki! conjuga-
tion as given by I.Ojima.2

Given a vacuum statevJ on A one can introduce a doublingdx :A→A^ A such that the
desired thermal statevx is given by

vx5~vJ^ vJ!+dx . ~1!

That this is indeed the case is shown in Section II which also reviews basic facts o
Heisenberg algebra and its exponentiation, the Weyl algebra, mostly omitting proofs. This s
of producing thermal states has in this setting no deeper justification except that it works.

However, there are two more general points of view.
First, the doubling of the algebra of observables characteristic for thermal field dynam

just an example of taking tensor products of representations of the field algebraA. A general and
systematic way of taking tensor products of representations is given, ifA is equipped with a
bialgebra structure,3 so it would be nice to have one on our algebra.

Second, a new possibility to study the thermal problem in an algebraic setting has em
with the works of Celeghini, Vitiello and their co-workers by exploring quantum deformation
Weyl–Heisenberg~WH! in connection with coherent and squeezed states, and quantum di
tion. The fact that one can produce squeezed states and thermal states by deformation
extended Weyl algebra has been shown using one-dimensional examples4–6 and the use of the
coalgebra structure as the doubling in thermal field theory was discussed in Refs. 7–9. In p
lar, a coherent state representation has been exploited and applications to lattice quantum m
ics have been suggested.5,6 These works on q-groups and thermal phenomena have set the qu
of how fundamental the doubling structure for the thermal systems is. A preliminary answer t
question can be given through the notion of Lie symmetries.10 In that approach a part of th
structure of the theory is deduced from a bialgebra~eventually produced from a symmetry Li
algebra10,11! with the rest given by the requirement of a Fock structure. The Fock structure
can, however, also be cast into a bialgebra form by using the extended Heisenberg algeb~see
Section III! thus allowing an axiomatic setting of the theory starting only from a bialgebra.

The present treatment is a further development of these results. It deals with the cas
higher dimensional phase space in a rather covariant way. The results are then, in particula
right form to be used, e.g., for the description of quantum fields on a curved spacetime backg
where there is no preferred Hamiltonian to split the phase space into separate modes.

Both points of view presented above ask for a bialgebra. Unfortunately, the Heise
algebraA cannot be turned into one as shown in Section III. However, it turns out that by g
over to a slightly different algebra, the extended Heisenberg algebraU, one can do away with this
problem, and there is a mapping from the extended Heisenberg algebraU onto the Heisenberg
algebraA that allows one to transport interesting structures, particularly the comultiplicatioD
responsible for tensor products of representations, into the context of physical observables

This is true even if one q-deforms the extended Heisenberg bialgebra: The deformed ex
Heisenberg algebraUx maps down onto theundeformedHeisenberg algebraA thus giving nothing
new for the algebra but providing us with new possible doublingsDx . It is these new doublings
Dx coming from deformations of the extended Heisenberg algebra that allow us to expre
arbitrary quasifree state in a way similar to thermal field dynamics. This is shown in Sectio
together with a discussion of the relevant deformations.

An example showing the relationship between the deformation parameterx and the inverse
J. Math. Phys., Vol. 38, No. 10, October 1997
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4973Kopf, Santana, and Khanna: Thermal field dynamics and bialgebras
temperature of the corresponding thermal state is given in Section IV. Section V contains c
sions and some general remarks.

II. THE HEISENBERG ALGEBRA AND ITS WEYL FORM

In order to set the notation it will be shown now that thermal states on a Heisenberg a
A can be obtained from a Fock representation~i.e., an irreducible representation obtainable fro
a vacuumvJ by the Gel´fand–Naimark–Segal-construction~GNS-construction, see, e.g., that in O
Bratteli and D.W. Robinson12! by a suitable ad hoc doubling. The Heisenberg algebra is gene
from a symplectic vector spaceG of arbitrary dimension with the symplectic forms(d,d) by the
usual commutation relations:

f~z1!f~z2!2f~z2!f~z1!5 i\s~z1 ,z2!, z1 ,z2PG

or

W~z1!W~z2!5e@~ i /2!s~z1 ,z2!#W~z11z2!, z1 ,z2PG.

Heref(z) are the field operators andW(z) their exponentiated Weyl form:

W~z!5eif~z!.

A vacuum statevJ on the field algebraA is given by a complex structureJ on G. On the Weyl
generators one has:

vJ~W~z!!5e2~1/4!z+J+s+z, ~2!

with contractions between the relevant vectors and tensors indicated by+. The vacuum state is als
fully determined by its two-point function:

vJ~f~z1!f~z2!!5 1
2z1+J+s+z2 .

The thermal states to be considered are quasifree and thus correspond to free~i.e., quadratic!
field Hamiltonians. For each quasifree state there is by the modular theory13 ~Kubo–Martin–
Schwinger theory~KMS theory, see O. Bratteli and D.W. Robinson12,14!! a Hamiltonian with
respect to which the state is thermal and therefore one has to show that one can produ
quasifree state of interest by our doubled Fock representations. Any quasifree state corresp
to a positive definite Hamiltonian can be written in the form~compare with O. Bratteli and D.W
Robinson,14 p.50!:

vx~W~z!!5e2~1/4!z+coth~V/2!+J+s+z, ~3!

where V is a positive definite operator arising from the diagonalization of the correspon
HamiltonianH:15

H5V+J+s. ~4!

It is known from thermal field dynamics thatV can be related to a Bogoljubov operatorx on
G anticommuting withJ by the following relation, giving an alternative parametrization of qu
sifree states:

cosh~2x!5coth
V

2
, ~5!

vx~W~z!!5e2~1/4!z+cosh~2x!+J+s+z ~6!
J. Math. Phys., Vol. 38, No. 10, October 1997
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4974 Kopf, Santana, and Khanna: Thermal field dynamics and bialgebras
with x satisfying

J+x52x+J, ~7!

s+x52x+s. ~8!

The promised doublingdx is now given by the following action on the Weyl generators:

dx~W~z!!5W~cosh~x!z! ^ W~sinh~x!z!. ~9!

One can check now by direct calculation thatdx is an algebra homomorphism and that
produces from the doubled vacuum statevJ^ vJ the right quasifree statevx :

vx5~vJ^ vJ!+dx~W~z!!

5~vJ^ vJ!~W~coshxz! ^ W~sinhxz!!

5vJ~W~coshxz!!vJ~W~sinhxz!!

using ~2!

5e2~1/4!z+ coshx+J+s+ coshx+ze2~1/4!z+ sinh x+J+s+ sinh x+z

by ~7!, ~8!

5e2~1/4!z+~cosh2x1sinh2x!+J+s+z

by the identity cosh2x1sinh2x5cosh2x

5e2~1/4!z+cosh2x+J+s+z.

But this is just the quasifree state~6! that is required.

III. THE EXTENDED HEISENBERG ALGEBRA AND ITS DEFORMATIONS

One would like to use a bialgebra structure on a field algebra, in particular the Heise
algebraA, and by the GNS-construction a vacuum statevJ giving a Fock representation, t
produce a new representation in which the vacuum doubled by the comultiplicationD will be a
thermal~and thus reducible! state.

There is, however, a problem with this straightforward idea: There is no bialgebra structu
the Heisenberg algebraA. This can be easily seen from the fact that the Heisenberg commut
relations for the fieldf(z) require a commutator to be proportional to the unit of the algebra

f~z1!f~z2!2f~z2!f~z1!5 i\s~z1 ,z2!1.

Now, a counit« of the bialgebra structure has to vanish on commutators and has to be
to 1 on the unit of the algebra, which is not possible unless the proportionality constant
commutation relations~Planck’s constant! is zero.

To improve that, the unit1 of the algebra can be replaced by an abstract central elemenH.
Now it is no longer necessary for the counit« to be equal to1 on this central element, the
commutation relations can be considered as a Lie algebra and there exists even a Hopf
structure on this extended Heisenberg algebraU which is actually now a universal envelopin
algebra of a Lie algebra.16 To recover a meaning in the field algebra one can map the extensiU
J. Math. Phys., Vol. 38, No. 10, October 1997
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4975Kopf, Santana, and Khanna: Thermal field dynamics and bialgebras
onto the plain Heisenberg algebraA. The mapD ():A→A^ A induced from the comultiplication
D:U→U^ U is no longer preserving the algebra unit but it is a morphism of algebras and
allows a tensor product of representations.

What is gained by considering the extended Heisenberg algebraU is the possibility of having
an underlying bialgebra structure giving a canonical doubling on the algebra of observableA.

Moreover, the extended Heisenberg algebraU can be deformed without changing the schem
thus producing new interesting doublings on the Heisenberg algebra. The useful deformatio
be found for the one-dimensional case in S. Majid16 and G. Vitiello,17 written in terms of annihi-
lation and creation operators. Additional information on how to obtain these algebras by co
tions from semisimple ones can be found in Ref. 18.

In our case the class of possible deformations will be parametrized by a Bogoljubov op
x on the classical phase spaceG assuming that a vacuum is given by the choice of a comp
structureJ on G. The Bogoljubov operator is characterized by anticommuting with the com
structureJ as well as with the symplectic forms on G:5,6

J+x52x+J, s+x52x+s.

Our deformations will break the manifest symplectic group symmetry of the extended He
berg algebraU sincex is not an invariant under these symmetries. They will be written in te
of a set ofR-independent eigenvectors$zi ,Jzi%.

The deformed commutation relations are:

@f~zi !,p~zj !#52 id i j @2H#x i
, ~10!

@f~zi !,H#50, ~11!

@p~zi !,H#50 wherep~zi !:5f~Jzi ! ~12!

and@x#x i
:5

sinhx ix

sinhx i
. ~13!

The deformed comultiplicationDx is:

Dxf~zi !5f~zi ! ^ ex iH1e2x iH ^ f~zi !, ~14!

Dxp~zi !5p~zi ! ^ ex iH1e2x iH ^ p~zi !, ~15!

DxH5H ^ 111^ H. ~16!

It can be checked by direct calculation that the comultiplicationD preserves the commutatio
relations and that it is coassociative:

@Dxf~zi !,Dxp~zi !#52 id i j @2DxH#x i
, ~17!

~Dx ^ 1!+Dx5~1^ Dx!+Dx . ~18!

The deformed commutation relations~10!–~12! give rise to an algebra isomorphic to th
undeformed one (x50). An isomorphism can be easily established, e.g., by rescaling the ge
tors f(zi) by 2H/(2Hx i

). In this sense only the coalgebra structure is nontrivially deformed
can be checked by observing that the cocommutative comultiplicationDx50 becomes non-
cocommutative. This point was emphasized by Celeghini, Giachetti, Sorace and Tarlini in R
If the Heisenberg algebra is understood as constructed from the classical phase space
J. Math. Phys., Vol. 38, No. 10, October 1997
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4976 Kopf, Santana, and Khanna: Thermal field dynamics and bialgebras
consist not only of the algebra alone but also of the inclusion map of generatorszi from the
classical phase space, then even the deformation~10!–~12! is nontrivial. A rescaling, e.g., off(zi)
is no longer possible without loosing the normalization ofzi with respect to the metricJ+s or
changing the inclusion map.

In the Weyl form the deformed commutation relations and the comultiplication can be w
as:

U~zi !V~zj !5e2 i [2H] x iV~zj !U~zi !, ~19!

DxU~zi !5U~exzi ! ^ U~e2xzi !, ~20!

DxV~zi !5V~exzi ! ^ V~e2xzi !, ~21!

with:

U~zi !:5eif~zi !5W~zi !, ~22!

V~zi !:5eip~zi !5W~Jzi !. ~23!

We turn now to the canonical mappingsp, pn of the deformed extended Heisenberg alge
Ux and its coproductsDx

n21Ux onto the Heisenberg algebraA and its tensor productsA^ n. It will
be required thatp, pn are algebra homomorphisms and thatH as well asDx

n21H are mapped by
p, pninto the units1, 1^ n. In the following the generatorsf(zi), p(zi) will be identified with their
imagesp(f(zi)), p(p(zi)).

The mapp is fully specified and it is thus tempting to setpn5p^ n, but thenDx
n21H would

be mapped inton•1 instead of1. To fix the normalization one has to set:

pn~Dx
n21f~zi !!5

1

An
p^ n~Dx

n21f~zi !!, ~24!

pn~Dx
n21p~zi !!5

1

An
p^ n~Dx

n21p~zi !!. ~25!

Now pn is also fully specified. The important thing now is that the mapDx
n21:Ux→Ux

^ n

factors through the mapsp, pn as can be checked on the generators. The result is a map

Dx
~n21!:A→A^ n ~26!

which fills in the commutative diagram

~27!

The mapDx
(n21) is an algebraic homomorphism and thus allows one to take tensor pro

of representations. Note, however, that due to the necessary normalizationDx
(n21) is not a co-

multiplication.
In the casen52, Dx

(1) is our canonical doubling. If we use now this canonical doubling
doubling a vacuum statevJ and the corresponding Fock representation, one obtains the statevx :
J. Math. Phys., Vol. 38, No. 10, October 1997
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vx~U~zi !![vx~W~zi !!

5~vJ^ vJ!+Dx
~1!~U~zi !!

5~vJ^ vJ!S US ex
zi

A2
D ^ US ex

zi

A2
D D

5e2~1/4!~1/2!zi +ex+J+s+ex+zi )e2~1/4!~1/2!zi +e2x+J+s+e2x+zi )

5e2~1/4!~zi + ~e2x1e22x!/2+J+s+zi !

5e2~1/4!~zi +cosh2x+J+s+zi !

and similarly:

vx~V~zi !![vx~W~Jzi !!5e2~1/4!~Jzi +cosh2x+J+s+Jzi !.

By extension from the generators one gets:

vx~W~zi !!5e2~1/4!~zi +cosh2x+J+s+zi !. ~28!

But this is just the quasifree state~6!.

IV. AN EXAMPLE: THE HARMONIC OSCILLATOR

In the special case of a one-dimensional harmonic oscillator some particular simplifica
occur. In its two-dimensional phase spaceG>R2 there exists a basis in which the symplectic for
s, the complex structureJ and the given Bogoljubov operatorx take the form:

sab5S 0 1

21 0D , ~29!

Ja
b5S 0 1

21 0D , ~30!

xa
b5S x 0

0 2x
D . ~31!

This basis is unique and can be given also by geometrical considerations unlessx50. UsingJ as
the imaginary unit one can now identify the phase spaceG with the complex numbers:

G>C. ~32!

The vacuum statevJ and the statevx obtained in~28! are then given by

vJ~W~z!!5e2~1/4!izi2
, ~33!

vx~W~z!!5e2~1/4!cosh2xizi2
. ~34!

The Hamiltonians compatible with the complex structureJ @i.e., those which have a diagonaliza
tion ~4! giving the fixedJ] are determined by the matrix

Hab5EbS 1 0

0 1D . ~35!
J. Math. Phys., Vol. 38, No. 10, October 1997
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4978 Kopf, Santana, and Khanna: Thermal field dynamics and bialgebras
The corresponding thermal states are

vb~W~z!!5e2~1/4!coth~bE/2!izi2
. ~36!

Fixing E as the energy of the harmonic oscillator and comparing~34! and~36! the statesvx

are identified with the thermal states,vb , of the Hamiltonian at inverse temperatureb, obtaining
the relation

coth
bE

2
5cosh 2x ~37!

between the inverse temperatureb and the deformation parameterx. So, in the end, the defor
mation parameterx has a nice interpretation as a function of the inverse temperature as po
out in Ref. 9 and explicitly exhibited here by~37!.

V. CONCLUSION

It is shown that there is a class of deformations of the extended Heisenberg bialgebraUx that
provide canonical doublings by mapping down their comultiplications on the Heisenberg al
A. These doublings give directly, without any redefinitions, all representations arising from
sifree states by the GNS-construction. In particular, the doublings give all thermal represen
for free Hamiltonians. Our construction works clearly for any finite dimensional system and o
level of calculus also for infinite dimensional systems. Functional analytic discussions fo
infinite dimensional case are omitted. Note, however, that at no point is unitary equivalen
representations used and that all Bogoljubov transformations are given by symplectomorphi
the classical phase space. Thus no problem is expected in extending our considerations
infinite dimensional case.

It would be useful to know if there are deformations other than the ones used here
extended Heisenberg algebraU. If not, then the construction becomes entirely canonical, since
class of deformations appears to be the only choice one could make in the construction. If th
other deformations, then it would be interesting to see the interpretation of the induced dou
on the Heisenberg algebraA arising from them.

In any case the present results show that the bialgebra structure is a logical way to ap
thermal field theory by providing both the correct results and a mathematically satisfactory g
structure.
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