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SUMMARY

Singularities often cause trouble in tracing rays in inhomogeneous anisotropic media.
The ray-tracing algorithms can break down in the vicinity of the singularities because
the medium becomes nearly degenerate and the right-hand sides of the ray-tracing
equations yield indefinite expressions. We propose a modified ray-tracing approach,
which is numerically stable and yields correct results in all types of singularities and their
vicinities. We demonstrate the applicability and efficiency of this approach using various
numerical examples. We discuss the possibility of the splitting of a ray when crossing a
singularity.
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1 I N T R O D U C T I O N

Singularities are very common in all kinds of anisotropy and

often cause difficulties in tracing rays in inhomogeneous aniso-

tropic media. They also cause anomalies in the polarization

of a wavefield and in the geometry of wave surfaces (Alshits

& Lothe 1979; Alshits et al. 1985; Crampin & Yedlin 1981;

Grechka & Obolentseva 1993; Helbig 1994; Vavryčuk 1999).

They are defined as the directions where two waves have

coincident phase velocities, hence the medium is degenerate in

this direction. The waves with a coincident phase velocity are

usually S1 and S2 waves, but in principle, the phase velocities of

P and S1 waves can also coincide. It is even conceivable that the

phase velocities for all three waves coincide in the singularity. We

distinguish between kiss, intersection and point singularities.

The point singularity is also called the conical point and is

probably the most complicated singularity affecting the geo-

metry of rays and the wavefield in the most striking way (Miller

& Musgrave 1956; Burridge 1967; Musgrave 1985; Grechka &

Obolentseva 1993; Rümpker & Thomson 1994). All these

singularities can appear in weakly as well as in strongly aniso-

tropic media. Under strong anisotropy, they usually appear

together with so-called triplications, which also complicate the

geometry of the wave front. However, triplications do not pose

complications in ray-tracing equations, while the singularities

can cause breakdowns of the ray-tracing algorithms (Shearer

& Chapman 1989; Červený 2001; Pšenčı́k & Dellinger 2001).

These breakdowns are connected with numerical instabilities

that arise whenever the phase velocity sheets of two waves are

close to each other. The medium becomes nearly degenerate

and the right-hand sides of the ray-tracing equations yield

indefinite expressions (Gajewski & Pšenčı́k 1990). This results

in inaccurate or even erroneous ray tracing, or in a collapse of

the algorithm.

In this paper we show that these difficulties can be overcome

by formulating a proper ray-tracing strategy. This strategy is

based on inspecting the behaviour of the polarization vector of

the traced wave whenever the ray approaches the singularity.

This strategy can be easily coded and only requires a slight

modification of existing ray tracers. Numerical examples are

used to demonstrate the applicability and efficiency of our

approach. We discuss the possibility of the splitting of the ray

in crossing the singularity.

2 R A Y - T R A C I N G E Q U A T I O N S F O R
A N I S O T R O P I C M E D I A

Ray-tracing equations for anisotropic inhomogeneous media

can be expressed in the following form (Červený 1972, eq. 13;

Červený et al. 1977, eq. 5.18):

dxi

dq
¼ 1

2

LG

Lpi
,

dpi

dq
¼ � 1

2

LG

Lxi
, (1)

where xi are the components of the position vector, t is

the traveltime, pi=ht /hxi are the components of the slow-

ness vector, G=G(xi, pi) is the eigenvalue of the Christoffel

tensor Cjk=aijkl pipl , and aijkl is the density-normalized elasticity

tensor. Eigenvalue G is calculated from the Christoffel equation,

detð!jk � GdjkÞ ¼ 0 , (2)

which represents a cubic algebraic equation

G3 � PG2 þ QG � R ¼ 0 , (3)
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with coefficients

P ¼ trð!jkÞ, Q ¼ detð!jkÞ, R ¼ trð!̂jkÞ , (4)

where Ĉjk stands for the matrix of cofactors of Cjk.

The Christoffel tensor Cjk has three eigenvalues G, which are

real-valued and positive, and three eigenvectors g. The eigen-

values correspond to three waves (P, S1 and S2) propagating

in anisotropic media, and the eigenvectors correspond to the

polarization vectors of these three waves. Hence, we should

determine three systems of rays. If all three eigenvalues of the

Christoffel tensor are different for some direction of slowness

vector p, GPlGS1lGS2, we speak of the regular direction in

anisotropy. If any two eigenvalues coincide for some slowness

vector p, we speak of the singular direction in anisotropy. A

typical example of the singular direction is the S-wave singularity.

If two eigenvalues coincide for all directions of p, then the

anisotropy degenerates to isotropy.

3 R A Y T R A C I N G I N R E G U L A R
D I R E C T I O N S

To evaluate the derivatives hG/hpi and hG /hxi on the right-

hand side of ray-tracing system (1), we can proceed in the

following three ways.

(1) We solve eq. (3) analytically and differentiate the solution.

However, this approach can be used only for very simple

types of anisotropy because in a general case the analytical

expressions can be quite complicated and evaluating them is

not very effective.

(2) We differentiate eq. (3) using the theorem on implicit

functions and express the ray-tracing system in the following

form (Červený 1972, eq. 15; Červený et al. 1977, eq. 5.19):

dxi

dq
¼ aijklpl

DŒ jk
DŒ

,
dpi

dq
¼ � 1

2

Lajkln

Lxi
pkpn

DŒ jl
DŒ

, (5)

where D̂jk is the matrix of cofactors of Djk=CjkxGdjk,

DŒ 11 ¼ ð!22 � GÞð!33 � GÞ � !2
23 ,

DŒ 12 ¼DŒ 21 ¼ !13!23 � !12ð!33 � GÞ ,

DŒ 22 ¼ ð!11 � GÞð!33 � GÞ � !2
13 ,

DŒ 13 ¼DŒ 31 ¼ !12!23 � !13ð!22 � GÞ ,

DŒ 33 ¼ ð!11 � GÞð!22 � GÞ � !2
12 ,

DŒ 23 ¼DŒ 32 ¼ !12!13 � !23ð!11 � GÞ ,

where G=1 and D̂ is defined as

DŒ ¼ trðDŒ jkÞ ¼DŒ 11 þDŒ 22 þDŒ 33 :

(3) Taking into account that matrix D̂jk in eqs (5) can be

expressed in terms of eigenvectors gk of the Christoffel tensor

Cjk as

DŒ jk
DŒ

¼ gjgk , (6)

we obtain the following form of the ray-tracing system

(Babich 1961; Červený & Firbas 1984; Gajewski & Pšenčı́k

1987; Shearer & Chapman 1989, eq. 6):

dxi

dq
¼ aijklplgjgk ,

dpi

dq
¼ � 1

2

Lajkln

Lxi
pkpngjgl : (7)

4 R A Y T R A C I N G I N S I N G U L A R
D I R E C T I O N S

If we calculate the rays for waves with coincident eigenvalues,

we face difficulties. Since the Christoffel tensor is degenerate,

the denominator and nominator terms in eqs (5) become zero

and the right-hand sides of these equations yield indefinite

expressions 0/0. This produces a numerical instability and causes

trouble in ray-tracing problems. The instability arises not only

when two eigenvalues coincide, but also whenever they are very

close to each other (Shearer & Chapman 1989; Červený 2001;

Pšenčı́k & Dellinger 2001). Therefore, eqs (5) are not very

appropriate for tracing rays in media with singularities and we

shall no longer consider them.

We can avoid the difficulties mentioned by using ray-tracing

system (7), which produces no breakdowns in singularities.

However, this system produces other difficulties. These arise

when we calculate the polarization vectors of traced waves,

which are required to evaluate the right-hand sides of the ray-

tracing system. In regular directions, the polarization vectors

are uniquely determined as eigenvectors of the Christoffel tensor.

In singular directions, however, the eigenvectors for degenerated

waves are not unique and thus we have to specify the rules for

determining the proper polarization vectors. Hereinafter, we

shall attempt to establish such rules for several particular types

of singularity.

4.1 Isotropy and very weak anisotropy

Interestingly, we meet no difficulties in using eqs (7) to

trace the rays of S waves in isotropic media. In isotropy, the

right-hand sides of eqs (7) are not sensitive to the actual choice

of the S-wave polarization vector. Hence, any polarization

vector perpendicular to the slowness vector is appropriate for

evaluating them and transforms (7) into the standard ray-

tracing system for S waves under isotropy (Červený et al. 1977,

eq. 3.2),

dxi

dq
¼ b2pi ,

dpi

dq
¼ � 1

b
Lb
Lxi

, (8)

where b is the S-wave velocity.

Obviously, a similar situation to isotropy appears in tracing

the rays of S waves in very weakly anisotropic media. In this

case, the slowness sheets of the S wave almost coincide in

all directions. The Christoffel tensor is nearly degenerate, and

we can accurately determine only the plane of the S-wave

polarization. The actual direction of the S-wave polarization

vectors in this plane is generally determined with low accuracy.

Fortunately, the low accuracy of the polarization vectors has

no effect on the correct tracing of rays for S waves because

of the low sensitivity of ray-tracing equations (7) to the choice

of the polarization vector in the S-wave polarization plane

(see Appendix A). Hence, the rays in isotropic and very weakly

anisotropic media can be traced by eqs (7) without any difficulty.
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Of course, ray tracing equations (8) are more effective than

eqs (7) when tracing rays in isotropic media. Likewise, ray

tracing based on the perturbation approach (Farra 1989;

Nowack & Pšenčı́k 1991) is more effective than eqs (7) in the

case of very weakly anisotropic media.

4.2 Kiss singularity

The next type of singularity to be inspected is the kiss

singularity. The kiss singularity is defined as the direction in

which two S-wave slowness surfaces touch tangentially at an

isolated point (see Fig. 1). Consequently, S-wave fronts are also

tangential at the kiss singularity, and the group velocities for

the both S waves coincide, being equal to the phase velocity and

parallel to the slowness vector at this point. In the vicinity of the

singularity, the polarization of S waves behaves anomalously

(see Fig. 1), and at the singularity the polarization vectors are

not defined uniquely. Nevertheless, this singularity does not

pose serious difficulties to ray-tracing system (7). Similarly to

isotropy, the right-hand sides of eqs (7) are insensitive to the

actual choice of the S-wave polarization vector in the singularity.

If we insert any polarization vector perpendicular to the slow-

ness vector, then ray-tracing equations (7) take the following

simple form in the singularity:

dxi

dq
¼ c2pi ,

dpi

dq
¼ � 1

c

Lc

Lxi
, (9)

where c is the phase velocity of the S waves along the axis of

symmetry (the same for both S waves). Since the ray-tracing

system is completely independent of the polarization vector of

the S wave in the singularity, we can also expect this system to

be weakly sensitive to variations of the S-wave polarization

vector in the close vicinity of the singularity. This property can

be proved in a similar way as in Appendix A for S waves in

weakly anisotropic media. Therefore, the possibility of the strange

or incorrect behaviour of rays due to S-wave polarization

anomalies near the kiss singularity can be excluded.

4.3 Intersection singularity

Difficulties can arise, however, in tracing rays in the vicinity of

an intersection singularity. The intersection singularity typically

occurs in transversely isotropic (TI) media, where the slowness

(or phase velocity) surfaces of S waves (SH and SV waves)

can intersect along a line (see Fig. 2). This singular line in

the slowness surface splits into two different lines in the wave

surface (Fig. 2, upper right plot). For the singular line, the

right-hand sides of eqs (7) depend on the choice of the S-wave

polarization vector. Hence, this choice has a significant impact

on the form of the rays calculated. However, it is not very

complicated to find a proper polarization vector of the traced

wave in the singularity. For tracing rays of the SH wave in the

singularity, we simply use the SH-wave polarization, and for

the SV wave we use the SV-wave polarization (Fig. 2, lower

plots). This has been recognized and successfully applied by

Shearer & Chapman (1989), who used analytical formulae for

polarization vectors of the SV and SH waves when tracing rays

in transverse isotropy. These analytical formulae (Shearer &

Chapman 1989, eqs A8 and A9) guarantee a smooth change

of the polarization vector along a ray as the ray passes the

singularity.
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If we evaluate the polarization vector numerically as the

eigenvector of the Christoffel tensor, we have no unambiguous

rule for calculating the polarization vector in the singularity.

However, the numerical approach should follow a similar rule

to the analytical approach: when a ray crosses the singularity,

the change of the polarization vector along the ray must be

smooth. This can be approximately realized by replacing the

polarization vector in the singularity by the polarization vector

at the point of a ray just before the singularity.

4.4 Conical point

The most complicated singularity in anisotropy is a conical

point. The conical point (or the point singularity) is defined

as the direction, in which two slowness sheets touch through

the vertices of cone-shaped surfaces (see Fig. 3). Hence, in the

vicinity of this singularity both the slowness sheets look like

two identical cones placed tip to tip (Crampin & Yedlin 1981;

Rümpker & Thomson 1994). The singular point in the slowness

sheet (point P in Fig. 3) generates a singular line in the

wave sheet. Hence, all points at the singular line of the wave

sheet have the same slowness vector. In other words, a cone

of acceptable rays corresponds to one slowness vector at the

singular point. Vice versa, wave sheets can also form a conical

point (point Q in Fig. 3). This point generates a line of points in

the slowness sheet that are associated with the same ray direction.

Despite the complexity of the geometry of the conical point,

we have to point out that the behaviour of polarization vectors

near the singular line in the wave sheet is surprisingly simple.

The polarization vectors behave regularly on both sides of

the singular line, and the polarization pattern is similar to that

for the intersection singularity (see Fig. 4). Hence, we can

assign the proper polarization of the wave at the singular line in

the same way as for the intersection singularity: we require a

smooth change of polarization along the ray when the ray crosses

the singularity.

Note that the order of waves is interchanged when the

ray crosses the singularity: the faster wave in front of the

singularity becomes the slower wave beyond the singularity,

and vice versa.

5 G E N E R A L S T R A T E G Y F O R R A Y
T R A C I N G

In the previous section we discussed the behaviour of the ray-

tracing equations for several particular types of singularity.

Now we generalize these results and draw up a unified strategy

valid for tracing rays in any kind of singularity and its vicinity.

In this strategy, no information about the type of singularity

will be required.

5.1 Procedure

5.1.1 The ray reaches a regular point

The polarization vector of the traced wave is calculated as the

eigenvector of the Christoffel tensor. From the three eigen-

vectors calculated, we choose the eigenvector that guarantees

a smooth change of the polarization vector from the previous

to the current point of the ray. We emphasize that it is not

sufficient to retain the type of wave (P, S1 or S2) in the ray-

tracing procedure. Since a singularity can appear between the

previous and the current point of the traced ray, the type of

the traced wave may change.

Determining the proper polarization vector, we can evaluate

the right-hand sides of ray-tracing equations (7) and trace the

ray to the next point.
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Figure 3. Conical point in Payton’s transverse isotropy (Payton 1992).

Upper plots show vertical sections of the slowness and wave surfaces of

the W1 and W2 waves. Lower plots show a 3-D sketch of the cone

of rays generated at the singularity (left-hand plot) and the form of

the wave surface near the singular line (right-hand plot). P denotes the

singularity, Q is the conical point at the wave surface. For the meaning

of the other quantities, see the caption to Fig. 2.
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Figure 4. The horizontal projection of the W1- and W2-wave

polarization vectors near the singular line at the wave surface in

Payton’s transverse isotropy.
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5.1.2 The ray touches a singularity

The polarization vector of the traced wave is not determined by

the Christoffel equation uniquely. Therefore, we calculate the

polarization vector as the limit of polarization vectors at points

of the ray just before the ray touches the singularity,

gþðqSÞ ¼ lim
q?qþS

gðqÞ , (10)

where t is the traveltime along the ray and tS is the traveltime at

the singularity. Inserting polarization vector g+(tS) into the

ray-tracing equations we move forward to the next point of

the ray.

5.1.3 The ray leaves the singularity

Here, we assume two alternatives.

(i) The next point beyond the singularity is regular. In this

case, the polarization vectors of the waves degenerated in

the singularity are now determined in the standard way by the

Christoffel equation. However, we have to check whether or

not the ray becomes split in the singularity. To identify this

case, we have to determine the polarization vectors of the waves

that degenerated in the singularity. We then calculate the limit

of polarization vectors along the ray when going backwards to

the singularity,

g�ðqSÞ ¼ lim
q?q�S

gðqÞ : (11)

If the polarization vector of one of the degenerated waves

beyond the singularity matches continuously the polarization

of the wave in front of the singularity,

g�ðqSÞ ¼ gþðqSÞ , (12)

the ray does not split. We then trace only the ray for this

particular wave (see Fig. 5a). In the other case, we have to trace

the rays for all waves degenerated in the singularity (see Fig. 5b).

(ii) The next point beyond the singularity is again singular. We

consider two cases when this situation occurs. First, when the

ray touches the singularity the wave starts to propagate in a

homogeneous anisotropic medium. Since the ray becomes

a straight line, the wave cannot leave the singularity until an

inhomogeneity occurs. Second, the ray plunges into a locally

isotropic (homogeneous or inhomogeneous) region. In both

the cases we can apply the polarization vector determined at the

previous singular point to trace the ray to the next point. In

isotropy, we can also switch to simpler ray-tracing system (8)

designed for this medium.

5.2 Numerical implementation

To apply the above procedure we have to specify how to

realize numerically the limits of the polarization vector in the

singularity in eqs (10) and (11). Since the ray is calculated

at discrete points only, we simply associate limit g+(tS) with

the polarization vector at the last point on a ray before the

singularity. Similarly, we associate limit g–(tS) with the polar-

ization vector at the first point on a ray after the singularity.

Obviously, to achieve the required accuracy, the coverage of a

ray by discrete points must be sufficiently dense in the vicinity

of the singularity. Also, in calculating polarization vectors we

have to apply an accurate procedure for calculation of the

eigenvectors of nearly degenerate matrices.

6 N U M E R I C A L E X A M P L E S I :
S P L I T T I N G O F R A Y S

In this section we apply the proposed ray-tracing strategy to

two models of the medium. In both models, a singularity occurs

along a plane interface, which separates media with different

types of anisotropy. In the first model, the interface separates

isotropic and anisotropic layers; in the second model, the inter-

face separates two anisotropic layers. The velocities are con-

tinuous functions across the interface, hence the interface

generates no scattered waves. Nevertheless, we shall show that

all rays incident at the interface split into two different rays.

6.1 Isotropy/anisotropy transition

The model consists of two layers: the upper layer is transversely

isotropic with a vertical axis of symmetry (VTI layer) and the

lower layer is isotropic. Both layers are vertically inhomo-

geneous. The interface is at a depth of 4 km. The point source is

situated in the isotropic layer at a depth of 8 km. The P-wave

velocities at the source and at the interface are a=5.5 and
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�Figure 5.
Behaviour ofpolarization vectors along the ray touching thesingularity. (
a)The ray does not split in the singularity. (

b)The raysplits into two rays in the singularity. Point S denotes the singularity.Full and dashed arrows show the polarization in front of and beyond



4.5 km sx1, respectively. The S-wave velocity in the isotropic

layer is b=a
ffiffiffi

3
p

. The P- and S-wave velocities in the isotropic

layer increase linearly with depth. The VTI in the upper layer is

defined by the density-normalized elastic parameters as follows:

a11=a22=a33, a13=a23=a11x2a44, a44=a55, a66=a44+2e3,

a12=a11x2a66. At the interface the values of these para-

meters are a11=20.25, a44=a11/3 and e3=0, and at the surface,

a11=12.25, a44=a11/3 and e3=1. The anisotropy is controlled

by anisotropy parameter e3 (see Vavryčuk 1997). This para-

meter is zero at the interface and linearly increases towards the

surface. Hence, the medium is isotropic at the interface and the

anisotropy gradually increases towards the surface. The P and

SV waves have directionally independent velocities a=
ffiffiffiffiffiffiffi

a11
p

,

b=
ffiffiffiffiffiffiffi

a44
p

, which linearly increase with depth. For the S-wave

velocities at the surface see Fig. 6. The rays of the S wave are

shot from the point source in the angle interval hsn0u, 90um in

steps of 10u.
Since the transition between the isotropic and the VTI

layers is smooth, no scattered waves are generated at the

interface. Nevertheless, the rays split at the interface (see Fig. 6,

lower plot) because the interface separates the singular and

regular anisotropic regions. Since the anisotropy is VTI, the

S wave splits into SV and SH waves. The splitting of the SV

and SH rays is smooth because the tangents of the split rays

coincide at the interface. The deviation between the rays of split

waves increases with increasing anisotropy of the VTI layer. If

the source generates the S wave with the polarization of the SV

or SH wave only, no splitting occurs at the interface.

6.2 Anisotropy/anisotropy transition

This model consists of two transversely isotropic layers: the

axis of symmetry in the upper layer is vertical (VTI), while

in the lower layer it is horizontal (HTI) and deviates from

the x-axis by 45u. The transverse isotropy of the HTI layer is

essentially the same as for the VTI layer. The difference is only

in the orientation of the axis of symmetry. At the source the

parameters of HTI in the local coordinate system, whose sym-

metry axis is parallel to the z-axis, are a11=30.25, a44=a11/3

and e3=1, and at the interface, a11=20.25, a44=a11/3 and

e3=0. The velocities of the P and SR waves are a=
ffiffiffiffiffiffiffi

a11
p

,

b=
ffiffiffiffiffiffiffi

a44
p

; they increase linearly with depth. The parameters of

the VTI layer are the same as for the isotropy/VTI model. Also,

the positions of the source and of the interface are similar to the

isotropy/VTI model. Anisotropy parameter e3 linearly decreases

in the HTI layer from unity at the source depth to zero at the

interface. Hence, both HTI and VTI layers are in fact isotropic

at the interface. The strongest anisotropy is observed at the

depth of the source and at the surface, but the anisotropies have

different orientations. The rays of the S waves are shot from

the point source in the angle interval hsn0u, 90um in steps of

10u, where h is the angle between the slowness vector and the

vertical axis.

Fig. 7 shows the results of the ray tracing of two S waves

(denoted SR and SP waves) generated at the source. Similarly as

in the isotropy/VTI model, the interface represents the singular

region in the HTI/VTI model. Since the orientation of anisotropy
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is different on both sides of the singularity, the rays of each S

wave split at the singularity. Fig. 7 shows the splitting of both

SR and SP waves separately (upper and lower plots).

7 N U M E R I C A L E X A M P L E S I I : F A L S E
B E N D I N G O F R A Y S

In this section we apply the ray-tracing strategy to vertically

inhomogeneous media containing the intersection singularity

and the conical point. We demonstrate how important it is

to determine the polarization vectors of traced waves in the

singularity and in its vicinity properly. We show that neglecting

the rules discussed in the previous section can lead to false ray

tracing. False ray tracing is reflected in an abrupt change of

the ray direction in the singularity. This false bending of rays

can be easily corrected when calculating correct polarization

vectors at and beyond the singularity.

7.1 Intersection singularity

In tracing rays near the intersection singularity we applied

a model similar to ‘Model 4’ introduced and studied by

Shearer & Chapman (1989). This model is extremely aniso-

tropic. Our model displays the same type of anisotropy, but

instead of the horizontal axis of symmetry, we use the vertical

axis of symmetry. Hence, the elastic parameters of the medium

are a11=a22=20.16, a33=19.63, a44=a55=3.48, a66=6.38,

a13=a23=7.26, a12=a11x2a66. These parameters refer to a

source depth of z0=8 km. The elastic parameters at other

depths were calculated as

akl ¼ aklðz0Þ½1 þ eðz � z0Þ�2 , (13)

where e=0.04 kmx1 is the normalized velocity gradient in the

medium. The intersection singularity is in the direction defined

by the slowness vector with angle h=58.59u. The rays of the

S waves were shot in the x–z plane in the following angular

intervals: hsn50u, 82um in steps of 2u for the slower S wave,

and hsn50u, 86um in steps of 2u for the faster S wave, where h is

the deviation of the slowness vector from the vertical axis.

Fig. 8 shows sections of the phase and group velocities at

the source and the results of the ray tracing. The intersection

singularity at the phase surface is split into two singular lines at

the wave surface. Moreover, one of the singular lines coincides

with the edge line due to triplication. Although the geometry

of the wave surface looks complicated, correct ray tracing

does not pose serious difficulties. The only problem arises in

the singularity, where we require a continuous change of the

direction of the polarization vector of the traced wave along the

ray. This requirement is important because the order of waves

is interchanged in the singularity: the slower wave becomes the

faster and the faster wave becomes the slower. If we neglect this

fact and assume that the wave should be faster (or slower)

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

7

8

x [km]

z 
[k

m
]



along the entire ray, we obtain spurious results. The change

of the polarization vector is discontinuous in the singularity

and we observe a false abrupt change of the direction of

the ray (Fig. 8, middle plots). Obviously, correct ray tracing

(Fig. 8, lower plots) yields smooth curved rays, as is expected in

smoothly varying inhomogeneous media.

7.2 Conical point

In tracing rays near the conical point, we use a medium

displaying cubic anisotropy. The cubic anisotropy is defined by

the following elastic parameters: a11=a22=a33, a44=a55=a66,

a12=a13=a23=a11x2a44+d, where d is the parameter measuring

the strength of anisotropy. We adopted the following values

for the elastic parameters at the source: a11=6.25, a44=a11/3,

d=2.00. The elastic parameters at other depths are provided by

eq. (13) with a value for the velocity gradient of e=0.01 kmx1.

Similarly to the previous models, the source is situated at a depth

of 8 km. The conical point in the cubic anisotropy is in the

direction defined by the slowness vector with the spherical angles

w=45u and h=54.74u. This implies that the conical point does not

lie in the x–z plane. Therefore, the rays of the S waves are shot in

the plane, which deviates from the x–z plane by angle w=45u
in the following ranges of angles h: hsn44u, 69um in steps of 1u
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for the faster S wave leaving the source and hsn55u, 70um in steps

of 1u for the slower S wave leaving the source. Angle h is the

deviation of the slowness vector from the vertical axis.

The sections of the phase and group velocities at the source

and the results of the ray tracing are shown in Fig. 9. Neither

the phase velocities nor the group velocities are axially sym-

metric in cubic anisotropy like in transverse isotropy (see Fig. 8).

Therefore, the four points in the phase velocity section really

represent four point singularities. The eight points in the group

velocity section represent a section of four singular circles

(for the geometry of the singular line, see Fig. 3). Although

the geometry of the conical point is more complicated than the

geometry of the intersection singularity, the ray-tracing results

are essentially the same in both types of singularity. If we do

not take into account the fact that the polarization vectors

must be continuous along a ray, the rays abruptly bend in the

singularity. If we interchange the type of the traced wave in

the singularity (S1 to S2 and S2 to S1) because of the continuity

of the polarization vector of the traced wave, the rays are

smooth and the abrupt ray bending disappears. The situation

significantly changes, however, if rays come very near to the

singularity but do not cross it. Fig. 10 shows ray tracing when

the rays are not strictly in the plane of the singularity, being shot

with the same values of the deviation angle h, but in the azimuth
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w=47u. In this case, the ray cannot touch the singularity and

the wave type (S1 or S2) remains unchanged along the entire

ray. Since the curvature of the phase velocity sheet is very high

near the singularity, the ray can be bent significantly even if the

velocity gradient in the medium is very weak. This situation

also requires the polarization vectors to be calculated with high

accuracy because of the extreme sensitivity of the ray direction

to the polarization in this particular region. However, this

bending occurs only in strongly anisotropic media and is limited

to the close vicinity of the conical point. Moreover, the ray

bending is always smooth (see Fig. 10, lower plots). For weakly

anisotropic media, this effect disappears.

8 C O N C L U S I O N S

We have proposed and tested a strategy for ray tracing

in anisotropic inhomogeneous media that is applicable even in

the singular directions and their vicinities. This ray tracing is
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numerically stable and yields correct results for all the follow-

ing difficult situations: transition between isotropy and aniso-

tropy, very weak anisotropy and all kinds of singularities in

strong anisotropy.

The proposed approach is a slight modification of the

ray tracing based on evaluating the right-hand sides of the

equations by means of the polarization vector of the traced

wave. The modification consists of imposing an additional

condition requiring the polarization vector of the traced wave

to be continuous along a ray. This condition is automatically

satisfied when tracing rays in regular directions, but must be

explicitly required in singular directions. If we do not treat the

polarization vector in this way, the ray tracing can produce

abrupt changes of the direction of the ray in the singularity.

This abrupt bending of a ray, however, is unphysical in smoothly

varying inhomogeneous media. The incorrectness of this bending

is clear for simple types of singularity such as an intersection

singularity, but less obvious for more complex singularities

such as a conical point. The conical point displays a com-

plicated geometry in both the phase and wave surfaces, and

thus we cannot exclude a distinct distortion of rays by this

singularity. This happens particularly in strong anisotropy,

when the ray approaches the conical point passing it without

touching. Although the rays can display a substantial bend-

ing in this case, this bending must always be smooth and the

polarization vector of the traced wave must be continuous

along a ray.

We also observe that the ray can split in the singularity. This

appears if the symmetry of anisotropy beyond the singularity

is different from that in front of the singularity. This is the case

of smooth transitions between isotropy and anisotropy. It can

also be observed under very weak anisotropy, where a small

perturbation of elastic parameters can lead to a rapid change of

the orientation of anisotropy, or to a change of anisotropy

itself. As regards strong anisotropy, splitting in the singularity

is probably not a frequent occurrence. Finally, we stress that

whenever we observe the splitting of rays in the singularity in

smoothly inhomogeneous anisotropic media, the splitting must

be smooth, meaning that the split rays must have the same

tangent in the singularity.
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I thank I. Pšenčı́k for critically reading the manuscript and for

his comments. This work was performed at CPGG/UFBA,

Salvador, Brazil, where the author was a visiting professor. The

work was supported by the agencies CNPq and PGS of Brazil,

by the Consortium Project ‘Seismic waves in complex 3-D

structures’, and by the Grant Agency of the Czech Republic,

grant no. 205/00/1350.

R E F E R E N C E S

Alshits, V.I. & Lothe, E., 1979. Elastic waves in triclinic crystals.

Topology of polarization fields and some general theorems,

Crystallography, 24, 683–693 (in Russian).

Alshits, V.I., Sarychev, A.V. & Shuvalov, A.L., 1985. Classification of

the degenerations and analysis of their stability in elastic wave theory

in crystals, J. Exper. Theor. Phys., 89, 922–938 (in Russian).

Babich, V.M., 1961. Ray method of calculating the intensity of wave-

fronts in the case of a heterogeneous, anisotropic, elastic medium, in

Geophys. J. Int., 1994, 110, 379–383.

Burridge, R., 1967. The singularity on the plane lids of the wave surface

of elastic media with cubic symmetry, Q. J. Mech. appl. Math., 20,

41–56.
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Vavryčuk, V., 1997. Elastodynamic and elastostatic Green tensors for

homogeneous weak transversely isotropic media, Geophys. J. Int.,

130, 786–800.
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A P P E N D I X A : S E N S I T I V I T Y O F R A Y -
T R A C I N G E Q U A T I O N S F O R S W A V E S I N
W E A K L Y A N I S O T R O P I C M E D I A T O
P O L A R I Z A T I O N V E C T O R S

In this Appendix we examine the sensitivity of eqs (7) to

perturbations of polarization vectors when tracing rays of

S waves in weakly anisotropic media. We deal with the S1 wave

only, because the problem for the S2 wave is analogous. We

assume that the perturbation of the polarization vector DgS1

lies in the plane of the S-wave polarization and represents

an error in determining the polarization vector gS1 in a nearly
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degenerate medium produced by a numerical algorithm. The

first equation in (7) is then expressed as

dxi

dq
¼ aijklplðgS1

j þ *gS1
j ÞðgS1

k þ *gS1
k Þ : (A1)

Since DgS1 lies in the plane of the S-wave polarization, we can

write

*gS1
k ¼ egS2

k , (A2)

where e is a small parameter. Hence,

dxi

dq
¼ aijklplðgS1

j þ egS2
j ÞðgS1

k þ egS2
k Þ

%aijklplg
S1
j gS1

k þ eaijklplðgS1
j gS2

k þ gS2
j gS1

k Þ , (A3)

where we neglect the second-order perturbations. The first term

in eq. (A3) is the exact right-hand side of the ray-tracing

equation; the second term corresponds to the error due to an

inaccurate polarization vector. Since this term is small, we

can substitute the elasticity tensor aijkl and slowness vector

pl for weakly anisotropic media by relevant quantities for

the isotropic background a0
ijkl and p0

l . Moreover, we utilize the

well-known identity for isotropic media,

a0
ijkl ¼

j
o

dijdkl þ
k
o
ðdikdjl þ djkdilÞ : (A4)

We then obtain

eaijklplðgS1
j gS2

k þ gS2
j gS1

k Þ

%ea0
ijklp

0
l ðgS1

j gS2
k þ gS2

j gS1
k Þ

¼ e
o
½ðj þ kÞðgS1

i p0
kgS2

k þ gS2
i p0

kgS1
k Þ þ 2kp0

i gS1
k gS2

k � ¼ 0 , (A5)

where we used

gS1
k gS2

k ¼ 0 , gS1
k p0

k%0 and gS2
k p0

k%0 : (A6)

Symbol $ in eqs (A3), (A5) and (A6) means equality in the

sense of the first-order perturbation theory.

Eq. (A5) proves that errors in the S1-wave polarization vector

affect the right-hand side of the first ray-tracing equation in (7)

by a perturbation of second order only. The same result can

also be obtained for the other equation in (7).
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