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Abstract

The use domain of IEEE 802.11 networks has broadened to several types of application, including those
that require quality of service and real-time guarantees. This trend in particular, has motivated the use
of formal methods, not only to obtain a more precise knowledge of protocol properties, but also to specify
and validate them. In this context, the contribution of this paper is twofold. First, we describe a formal
specification of the IEEE 802.11 medium access control functions using UPPAAL, a freeware model checker
tool. The described specification allowed us to verify important properties of these functions, taking into
account both time and concurrency. Second, we report an experience of model checking a widely used and
reasonably complex communication protocol, taking into consideration temporal requirements.

Keywords: Formal Methods, Real-Time Systems, Wireless Network, Software Reliability, Software
Specification.

1 Introduction and Related Work

In the past few years protocols based on the IEEE 802.11 specification [8] and ap-

plications that make use of it have become increasingly popular. More recently,

this wireless network standard has been required to support systems that need

quality-of-service (QoS) [16,19] and/or real-time guarantees [17,14]. In this paper

we use formal methods to prove some properties of this standard. Since real-time or
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QoS oriented applications require high levels of communication reliability, a precise

knowledge of the protocol standard properties and its correctness, mainly consid-

ering its timing behavior, is needed. Clearly, providing this for a protocol standard

with the level of complexity of the IEEE 802.11 is a challenge.

Although the IEEE 802.11 standard is nowadays widely used and model checker

tools have become increasingly accessible, the formalization and the formal verifica-

tion of the standard properties have attracted little attention. A formal description

written in SDL (Specification and Description Language) can be found in the spec-

ification of the standard [10]. This description can be used by simulators to help

one to find possible error scenarios [5]. Other approaches based on simulation have

already been used [4]. It is well known that simulation is particularly helpful in

understanding a complex specification. However, it cannot ensure its correctness.

To the best of our knowledge, some properties of the IEEE 802.11 standard has

been proved only recently [18,12]. However, this work has three main limitations.

Firstly, although the standard was formally specified, the verification followed an

informal and non-mechanized approach. Secondly, as the concept of time was not

modelled, only safety and liveness properties (without considering time) were taken

into account. Timeliness, as needed by QoS and real-time oriented applications, has

not been considered. To understand the third limitation, some explanation about

the coordination functions of the protocol standard is needed.

IEEE 802.11 provides two coordination approaches, provided by the Point Co-

ordination Function (PCF) and the Distributed Coordination Function (DCF), re-

spectively 5 . The former uses an arbiter station to coordinate the medium access,

making it possible to avoid access conflicts between different stations. The medium

access control policy used by the latter, on the other hand, is distributed and it en-

sures only the best-effort delivery of messages. As systems may alternate between

PCF and DCF during its operation time, the protocol behavior must be analyzed

considering both these functions in an integrated way. However, [18] have verified

these functions in isolation. Issues related to the possible interference that one

function may have in the temporal behavior of another has not been taken into

account.

Another work presents a formal verification and specification of the medium ac-

cess control of the IEEE 802.11 using probabilistic model checking. To do this, the

authors combine both non-probabilistic and probabilistic models, using timed au-

tomata to specify the MAC sub-layer. The probabilistic timed automata is checked

by PRISM [11] to verify properties like the probability that a station sends a packet

correctly within a certain deadline. However, the coexistence between PCF and

DCF was also not considered and sometimes probabilistic answers are not sufficient

for applications that require real-time guarantees.

In this paper we present a formal specification and verification of the IEEE

802.11 standard, where the PCF and DCF functions are considered in an integrated

5 There is a version of the standard which introduces mechanisms to deal with message priorities, called
IEEE 802.11e [9]. The main rules of IEEE 802.11e MAC are essentially the same, where the coordination
functions, HCF and EDCF have similar meaning as PCF and DCF but operate with traffic categories.
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way and timing properties were taken into account. We understand that due to

QoS and real-time application requirements, for which communication timeliness

may be a reliability issue, applying formal techniques to prove the timing behavior

of the protocol is a needed step forward. To do so, we made use of UPPAAL [3], a

model checking tool jointly developed by the Basic Research in Computer Science

(BRICS) of the Aalborg University and by the Department of Computer Systems

of the Uppsala University. UPPAAL provides the concepts of time and clocks,

allowing for the modelling, simulation and verification of computing systems that

require timing guarantees. UPPAAL has been successfully used to prove correctness

of several types of industrial applications [2,7,6], including some communication

protocols [15].

Using UPPAAL we have represented the temporal behavior of the IEEE 802.11

standard and modelled the temporal effects of the integration between the PCF and

DCF functions. Also, we formally proved important properties of the IEEE 802.11

specification. Among the verified properties we emphasize the support provided by

the standard to applications that require timing guarantees. Up to now this kind

of property has not been formally proved.

The remainder of this paper is structured as follows. The sections 2 and 3

briefly describe the MAC layer of the IEEE 802.11 standard and UPPAAL, respec-

tively. The specification and verification are presented in section 4. Then, section

5 provides our final comments and points out some possible research directions.

2 IEEE 802.11 Medium Access Control

The IEEE 802.11 standard defines two medium access control schemes or coordina-

tion functions: Point Coordination Function (PCF) and Distributed Coordination

Function (DCF). The PCF is based on medium access arbitration. One of the sta-

tions works as an arbiter, determining when each station of the network is allowed

to send frames. The DCF is not based on a special station controlling the access

to the medium. Stations trying to send frames contend for obtaining control of the

medium. This might lead to colisions.

When PCF is being used to control access to the medium, the network is called

to be in the Contention Free Period (CFP), since the medium arbitration avoids

collisions. When DCF is being used, the network is called to be in the Contention

Period. Support for PCF is optional. When a network supports PCF, both coordi-

nation functions occur alternatively in time.

2.1 DCF - Distributed Coordination Function

The DCF is the basic coordination function in IEEE 802.11 and defines a CSMA/CA

(Carrier Sense Multiple Access / Collision Avoidance) access method. This method

is based on medium sensing before each message is sent (Carrier Sense) and on a

mechanism for avoiding (instead of detecting, as in Ethernet) collisions (Collision

Avoidance). Before sending a frame, a station first verifies if the medium is free

(no station is currently transmiting). If it is, the station sends the frame and waits
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for an acknowledgment (ACK), confirming correct reception of the message by its

destination. After having started, a station continues to transmit a frame until

the whole frame is successfully sent, even if collisions might have happened. If the

medium is not free, the station executes a backoff procedure. After having executed

it, the station tries to send the frame again. The station repeats this process until

either it receives an ACK frame or it stops after having tried a certain amount of

times.

A station verifies if the medium is free or not by using a sensing mechanism

in the physical layer together with a logical verification mechanism at the MAC

sublayer. In the physical layer, the station senses the physical medium to detect

the presence of signals indicating current transmission. In the MAC sublayer, the

medium activity verification is performed by using a variable, local to each station,

called NAV (Network Allocation Vector). At each instant of time, the value of this

variable indicates how long the medium will still be busy. The value of this variable

is set by using information about the duration of frame transmissions sent by the

stations as part of the frame headers. A station only assumes the medium to be

free if the medium sensing at the physical layer indicates that there is no signal in

the medium and if the NAV value is zero.

Before each frame can be sent, the sending station must sense the medium to

verify that it is free for a certain period of time, known as interframe space (IFS).

Three types of IFSs are defined for the DCF: the Short Interframe Space (SIFS),

the DCF Interframe Space (DIFS) and the Extra Interframe Space (EIFS). The

SIFS is the shortest, followed by the DIFS and EIFS, respectively. The SIFS and

the DIFS have both a fixed length for a particular transmission physical medium.

The EIFS has a varying length, depending on failure conditions. The IFSs are used

as a mechanism to provide prioritary access to the medium. As shorter the IFS, as

higher the priority for accessing the medium, since a station needs to wait a shorter

time before trying to use the medium. Each IFS is used in specific situations of the

protocol.

The backoff procedure works as follows. When a station starts the backoff proce-

dure, it waits for the medium to become free for a DIFS period. After that, it waits

for a random period of time, known as the contention window or backoff period. In

order to control how long it still has to wait, each station has a local clock variable,

which has its value decremented as the medium is free. If the medium becomes busy

during a backoff period, the value of the clock is frozen. The clock is decremented

again when the medium becomes free. This procedure is repeated until the whole

backoff period has elapsed (the clock reaches zero). Before transmitting, however,

the station still needs to sense the medium free for at least a DIFS period.

In order to avoid that collisions occur during the transmission of a large data

frame, two channel allocation frames can be used: the Request to Send (RTS) and

the Clear to Send (CTS). To allocate the use of the medium, a station sends a RTS

frame to the destination station. When it receives a RTS, the destination station

waits for a SIFS and then sends a CTS. After having received the CTS, the source

station will wait for a SIFS and will then send its (application) data. The RTS
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frame has information in its header about how long the sending station intends to

use the medium. When a station reads a RTS frame, it updates its NAV variable

with this duration time.

The DCF does not guarantee maximum delay times for frame transmissions

(best-effort policy) [4].

2.2 PCF - Point Coordination Function

The PCF is defined as optional in the IEEE 802.11 standard and is built on top of

DCF. As described previously, the medium access control in the PCF is based on

arbitration. The station working as the bus arbiter is called the Point Coordination

(PC). A station will only transmit if either it was polled by the PC or is replying

to a previous transmission with an ACK.

To begin a CFP (period during which the PCF is being used), the PC waits until

the medium is free for a time interval (interframe space) called PCF Interframe

Space (PIFS) and sends a special frame, called beacon frame. A PIFS is longer than

a SIFS and shorter than a DIFS. After having waited for a SIFS period, the PC can

choose either to end the CFP, by sending a CF-End frame, or to poll some station, by

sending one of the following frame types: CF-Poll, CF-Poll+Data or Data. The first

frame is used by the PC to poll a station, without sending additional (application)

data. The second is used when the PC polls a station and sends (application) data

simultaneously. The third is used only for sending data.

A polled station waits for a SIFS interval and then replies either with a CF-ACK

(acknowledgment) frame, if it does not have data to send, or with a CF-ACK+Data,

otherwise.

The PC starts a new polling cycle by transmiting either a CF-Poll, CF-

Poll+Data or CF-ACK+CF-Poll+Data. The CFP ends when the PC sends a CF-

End frame.

The frame sent at the beginning of a CFP, the beacon frame, has information

about the maximum duration of the CFP (CFP Max Duration). Each station,

when reading a frame of this type, uses this information to update the value of

its NAV. A CFP and a CP might occur during a time interval known as the CFP

repetition interval (CFP RATE). Both the CFP RATE and the CFP Max Duration

are configuration parameters for the network.

It is to be supposed that a network can support data flows with timing con-

straints during a CFP [4].

3 UPPAAL

In UPPAAL a system is represented as a state-graph model using a variant of

the timed automaton [1]. The properties to be verified are specified in a dense

timed logic called Logic for Safety and Bounded Liveness Properties(Ls) [3], which

is defined as a subset of the dense timed logic Lv[13].
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3.1 Timed Automata and Timed Automaton Networks

A timed automaton is composed of a set of finite states, an initial state, a finite

set of edges and a finite set of clocks. Constants and variables can be declared to

represent channels, boolean values or numeric values. Invariant conditions can be

associated to the states and three types of labels can be associated to the edges

representing: guards, synchronisation functions and actions. The UPPAAL state-

graph model is made up of circles that represents states, double concentric circles

that represent the initial state, and arrows interconnecting the states representing

automaton edges.

A system can be modelled using a timed automaton network in which each

automaton models a system part. Clocks are used to specify temporal restrictions

which will be associated to the states and edges of the automaton. When the

automaton execution starts the clock values increase at a constant rate. Invariant

conditions associated with a state restrict the permanence of the automaton on that

state.

A guard restricts the execution of the edge with which it is associated. A syn-

chronisation function represents either an input or an output operation on a channel.

It is defined using the decorated channel variables channel! and channel? repre-

senting the output and input of a message by the channel channel, respectively. An

edge with a synchronisation function can only be activated synchronously involving

two or more automata. An action is represented by a set of values assigned to

variables and to clocks and will occur when the edge accompanying it is executed.

When the automaton network execution starts each automaton is at its initial

state and its clocks and variables that have not been initialised yet contains zero

values. An automaton network configuration is represented by a pair 〈q, v〉, where

q is a vector which contains the current state of each automaton, and v associates

a value with each one of the clocks and variables.

A delay transition corresponds to the passage of time. In this case the automaton

network clock values are updated but the automaton current states remain the same.

A delay transition can occur only if the clock values do not violate the invariant

conditions associated to the states. An action transition occurs by activating one

automaton edge in the automaton network. An action transition causes the system

to move from configuration 〈q, v〉 to configuration 〈q′, v′〉 provided that both the edge

guard is satisfied and the synchronisation conditions associated with the edge are

executed. Then all the actions in the edge are executed and the clocks unspecified

in the actions will not have their current values modified.

Some channels and states can be declared urgent. An edge with an urgent

channel will be executed as soon as possible, regardless of any delay transitions.

Similarly a state declared urgent (marked with the letter U) does not permit the

evolution of the network by delay transitions.

States can also be declared committed (marked with the letter C). With such

states sequences of atomic transitions can be modelled. In this case delay transitions

and interleaving between actions specified in other parts of the network do not occur.
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3.2 Timed Logic

The verification of properties in UPPAAL is done by analysing the reachable states

of the automaton model starting at its initial configuration. The goal is to verify

whether a determined configuration is reachable from the initial states. For this

purpose UPPAAL defines a subset of a timed dense logic called Ls. In general this

language is composed of logical operators (and, or, imply, not), temporal operators

([] - always, <> - eventually, --> - leads to) and path operators (A - to all way, E -

exist a way). In table 1 the syntax and semantic of Ls are presented informally.

Table 1
Semantic of Ls

Prop. Description

E<>p It is possible to get a state where p will hold (possible p)

A<>p p eventually holds

E[]p Exists a path such that p always holds (potentially p)

A[]p p always holds (invariable p)

p-->q Since that p holds q eventually holds (p leads to q)

The symbols p,q can assume one of the following values: Process.state; clock

∼ value; p or q; p and q; not p; p imply q; and deadlock.

The variable Process.state represents the state state of the model Process.

The variable value represents a real positive number. The symbol ∼ represents one

of the operators in the set {=, ! =, <,≤, >,≥} and deadlock represents the fact

that the system can not progresses without violating some restrictions.

4 Specification and Verification

In this section we describe how the specification and verification of properties for

the medium control functions of the IEEE 802.11 were carried out.

4.1 Specification of the IEEE 802.11 Medium Access Control

The MAC sublayer was modeled using six automata. Two of them model the

behavior of a station in the DCF. The others model the behavior of a station in

the PCF, the behavior of the PC, the behavior of the carrier sense function and the

behavior of the medium.

These automata contain a set of global constants and variables: a) to represent

parameters that depend on the physical medium (e.g. SIFS, DIFS, PIFS), b) to in-

dicate the transmission time of frames exchanged by the protocol (e.g. ACK TIME,

CF END TIME, BEACON TIME), c) to model the interactions resulting from the

frame starting or ending transmission between the workstations and the medium

(e.g. channels iniACKm, endACKm), d) to model the interactions resulting from

the frame starting or ending transmission between the medium and the workstations
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(e.g. channels iniACK, endACK) and e) to control the behavior of the protocol and

to indicate its general state (DCF, PCF).

4.1.1 Stations in the DCF

The automata in Figures 1 and 2 model the behavior of stations in the DCF. The

former models the task of receiving messages at each station and the latter the task

of sending a message.

Init

ReceivedMPDU

MPDUOk

local <= SIFS

WaitSIFS
local<=SIFS

WaitMPDU

SendingCTS
local<=CTS_TIME

ReceivingMPDU

SendingACK
local<=ACK_TIME

ReceivingRTS

local:=0
iniMPDU?

local:=0,
destiny:=0

noiseOnChan

iniACKm!
local==SIFS

local:=0

iniCTSm!
local==SIFS

local:=0

local:=0,
destiny:=0

noiseOnChan

local:=0,
destiny:=id

iniRTS?

endCTSm!
local:=0

local==CTS_TIME

endMPDU?
local:=0

local==ACK_TIME
endACKm!
local:=0,
destiny:=0

iniMPDU?
local:=0,
destiny:=id

destiny==0

endRTS?
local:=0

Fig. 1. Message reception at stations in the DCF

To model the receipt of messages a local variable called local was declared.

This variable is used to control the interframe spacing during a communication

process. The behavior of the station specified by the automaton of Figure 1 is

as follows: In the Init state (the initial state of the automaton) the station is

only monitoring the medium, waiting for a message to arrive. A RTS frame is

received in ReceivingRTS. In state WaitSIFS the station waits for the completion

of a medium inactivity period to respond to the sending station. A CTS frame is sent

in SendingCTS. In WaitMPDU the station is waiting for the arrival of a message. In

ReceivingMPDU the station is receiving a data frame. The consistency of a received

message is verified in ReceivedMPDU. The MPDUOk state represents the occurrence

of a successful transmission. Finally, in SendingACK the station is sending an ACK

frame.

The behavior of this automaton can be explained as follows. The automaton

starts in the Init state and waits for another station to send a RTS frame (edge with

iniRTS?) or a MPDU frame (iniMPDU?). In the first case the automaton begins to

process the RTS frame (state ReceivingRTS) and at the end of this process it moves

to state WaitSIFS (edge with endRTS?) where it remains for at most a SIFS period,

which is guaranteed by the local<=SIFS invariant associated with the state.

In the WaitSIFS state, the station will randomly choose either to return to

the initial state, i.e. RTS was not received successfully, or to answer with a CTS

frame. In the latter case, the transition can only occur after a SIFS period has

elapsed, which is guaranteed by both the local==SIFS guard associated with the

edge and the invariant local<=SIFS associated with the state WaitSIFS. From this
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transition, the automaton will synchronize with the medium through iniCTSm!

starting the transmission of a CTS. The automaton remains in SendingCTS until

the end of the CTS transmission, signals to the medium that this transmission

has finished (endCTS!) and waits for the arrival of a MPDU frame. It remains in

state WaitMPDU until the start of a MPDU transmission (iniMPDU?). After this, it

makes a transition to ReceivingMPDU. In modeling the Basic DCF and DCF with

RTS/CTS operations, this state is also reachable from the initial state (state Init)

through the edge with the same action (iniMPDU?).

The automaton remains in ReceivingMPDU until it detects the end of the frame

transmission (endMPDU?) going to state ReceivedMPDU. Then, it can randomly

choose to either return to state Init, i.e. the message was corrupted, or go to

state MPDUOK if the MPDU reception was successfully. In the latter case, it waits

a SIFS period, as described by the invariant (local<=SIFS) and by the guard

(local==SIFS). At this moment, it begins to send an ACK frame through the

action iniACKm!. Then, the automaton remains in SendingACK until the end of the

transmission of the ACK frame and finally returns to Init(endACKm!).

For the task of sending a message, first the backoff procedure (represented by

the white circles in Figure 2) is described then the message exchange process. Rep-

resenting the circles with two colours is only for the sake of clarity.

Fig. 2. Message transmission at the DCF

The backoff procedure can be engaged by four edges. The first is from the

InitDCF state and it is engaged when the station ready to transmit detects the

medium busy (nav==BUSY). The second edge is from the WaitDIFS state and is

activated when the station that is waiting for a medium inactivity period elapses

(DIFS) perceives that, during this period, another station has begun a transmission

(busy?). The third edge is activated when the sending station does not obtain a

CTS after sending a RTS frame (NoCTS state). Finally, the fourth edge (from the

state NoACK) indicates that a station has not received an acknowledgment frame

after transmitting the MPDU because the communication process has failed.
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When the station is in backoff, it verifies whether the medium is free or busy.

If the medium is busy, the automaton moves to state WaitIDLE (edge with guard

nav==BUSY), where it waits for the medium to be free. Once it is free (idle?

activated), the automaton goes to state WaitIFS1. In this state the station waits a

DIFS period of medium inactivity. After this, the station waits the backoff random

waiting period. The state WaitIFS1 can be reached directly from InitBackoff if the

medium is free when the backoff has been initiated (edge with guard nav==IDLE).

If the medium is busy during the period that the station is waiting the DIFS period

(synchronization busy?), the automaton moves to state WaitIDLE, where it waits

again for the medium to be free. If the medium continues free for the whole period

(invariant local<=DIFS associated to state WaitIFS1 and guard local==DIFS of

the edge that connects WaitIFS1 and ChooseBckOffValue provide it), the state

ChooseBckOffValue is reached.

The urgent ChooseBckOffValue state has several edges to the Backoff state.

These edges model a random waiting time that is stored in the local clock variable

iBckOffTime that simulates the backoff clock. These random waiting times were

limited for the sake of simplicity, without, however, compromising the model. The

automaton remains in Backoff at most a aSlotT ime. If the medium continues free

during all the aSlotT ime, the backoff clock is decreased (action iBckOffTime--).

However, when waiting for the passage of a aSlotT ime in the state backoff, a

station may perceive that the medium becomes busy again and it should stop

its backoff clock. If this is the case, It goes to state Freeze where the variable

iBckOffTime no longer decreases at each aSlotT ime. The automaton stays in the

state Freeze until the medium becomes free again and then goes to state WaitIFS2

remaining there either until the medium becomes busy or until after a DIFS period

of inactivity (invariant local<=DIFS and guard local==DIFS). In the first case, it

returns to state Freeze. In the second case, it returns to state Backoff and waits

aSlotT ime inactivity period to decrease the backoff clock. When the backoff clock

reaches zero (guard iBckOffTime==0), it means that the backoff period has finished

and the state EndbackOff is reached. Then the process of transmission is started

immediately from the committed state CanTransmit.

The gray circles in Figure 2 refers to message transmission. The station ready

to transmit verifies if the medium is free (nav == IDLE guard in the edge between

the states InitDCF and WaitDIFS), waits the medium inactivity period (WaitDIFS

state) and then sends either a RTS frame (CanTransmit, SendingRTS), modeling a

DCF with RTS/CTS or a MPDU frame (CanTransmit, SndMPDUDirect), modeling

a Pure DCF.

The state SendingRTS is reached after a write operation in the channel iniRTSm.

The automaton remains in this state for the necessary time to transmit a RTS

frame (invariant local <= RTS_TIME and guard local == RTS_TIME) and moves

to WaitCTS. The automaton stays at most CTSTimeout time in the state WaitCTS

and then leaves it because either CTSTimeout has elapsed (the case in which the

automaton moves to state NoCTS and begins a backoff procedure) or a CTS frame

has arrived. Exiting from this state occurs through an action with the medium
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(iniCTS? and then state ReceivingCTS). The automaton stays in ReceivingCTS

until the end of transmission of the CTS frame (endCTS?) and moves to state

WaitSIFS. In this state, it waits the time between SIFS and begins to send the

data (iniMPDUm!) reaching the state SendingMPDU. The period of time that the au-

tomaton stays in state SendingMPDU depends on the size of the frame that is being

transmitted and can vary between MPDU_MIN_TIME and MPDU_MAX_TIME (invariant

local<=MPDU_MAX_TIME and guard local>=MPDU_MIN_TIME).

In the state SendingMPDU occurs the end of the transmission (endMPDU!) and

then a movement to state WaitAck. In WaitAck, the automaton waits for an ac-

knowledgment frame (iniAck?) or an occurrence of timeout (ACKTimeout). If time-

out occurs, it is because the MPDU transmission has failed and the automaton

has to move to NoAck and a backoff procedure should be engaged. If the MPDU

transmission has been successful, an ACK frame is received ((ReceivingACK)) until

it ends (endACK?). At this moment, the automaton moves to state Transmitted in-

dicating that the transmission has successfully completed, and then moves to state

Init.

4.1.2 Point Coordinator (PC)

As represented in Figure 3, because of the alternation between CPs and CFPs,

the PC needs to wait at least a period given by the repetition rate CFP Rate

minus CFP Max Duration to begin a CFP. Thus, only after the passage of a

CFP Rate (invariant period<=CFP_RATE-CFP_MAX_DURATION in state Init and

guard period==CFP_RATE-CFP_MAX_DURATION) the PC can try to start the CFP

and moves to sate InitPCF. In this state the PC checks the medium immediately.

If it is free (nav == idle)), the automaton moves to state WaitPIFS and then waits

a PCF interframe space (PIFS).

Polling
local<=SIFS

InitPCF

Initperiod<=
CFP_RATE-CFP_MAX_DURATION

WaitPIFS
local<=PIFS

MediumBusy

ResetVar

SendingBeacon
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STAPolled
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STATransmiting

Ack

SendingCF_Poll

SendingCF_Poll$CF_Ack

SendingData$CF_Poll$CF_Ack

SendingData$CF_Poll

WaitingAck
local<=PIFS
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DataTo
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local<=PIFS
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NoAck
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local:=0
iniBeacon!
local==PIFS

writeAck && local==SIFS

writeAck:=false,
local:=0

iniCF_End$CF_Ack!

!writeAck && local==SIFS
iniCF_End!
local:=0

iniPCF:=true,
maxPCF:=0

period==CFP_RATE-CFP_MAX_DURATION

local:=0
nav==IDLE

nav==BUSY
local:=0

idle?
local:=0

busy?
local:=0

mode:=DCF,
period:=0,
iniPCF:=false

local==BEACON_TIME
endBeacon!

local:=0

endCF_End!
local:=0

local==CF_END_TIME

local==CF_END$CF_ACK_TIME
endCF_End$CF_Ack!

local:=0

!writeAck && local==SIFS
iniMPDUm!
local:=0

local>=MPDU_MIN_TIME
endMPDUm!

local:=0

!writeAck && 
local==SIFS
iniCF_Pollm!
local:=0

endMPDUm!
local:=0

local==MIN_DATA_TIME

endMPDU?
local:=0

endMPDU?
local:=0

writeAck:=true

writeAck && local==SIFS
iniData$CF_Ackm!
local:=0, writeAck:=false

phyBusy?
local:=0

local:=0
iniMPDU?

local==PIFS
local:=SIFS, readAck:=false

writeAck && local==SIFS
iniData$CF_Ack$CF_Pollm!
local:=0, writeAck:=false,
readAck:=true

!writeAck && local==SIFS
iniData$CF_Pollm!
local:=0, readAck:=true

!readAck

iniNull?
local:=0

readAck
readAck:=false

iniCF_Ack?

writeAck &&
local==SIFS
iniCF_Ack$CF_Pollm!
local:=0, writeAck:=false

cfAck?

iniMPDU?
local:=0

iniACK?
local:=0

endACK?
local:=0

local==PIFS
local:=0

phyIdle?
local:=0

local==PIFS
local:=SIFS

phyIdle?
local:=0

phyBusy?
local:=0

nav==IDLE
mode:=PCF
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phyIdle?
local:=0

phyIdle?
local:=0

iniMPDU?
local:=0

Fig. 3. Point Coordinator

After a PIFS of inactivity, the PC begins the transmission of a beacon frame

(iniBeacon!) and the automaton moves to SendingBeacon and stays there as long

as necessary for the transmission of the beacon frame. After this period, the trans-

mission of the beacon is finished (endBeacon!) and the PC begins to operate in
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PCF mode.

The PC does a series of cycles in which it periodically visits the state Polling.

In each of these cycle the PC can schedule or not a station and can choose or not to

send data to one station. The states SendingData, WaitingAck and ReceivingAck

model the sending of data by the PC to a station not scheduled. This behavior

is similar to the sending of data in basic DCF mode. The PC can schedule a sta-

tion in isolation or combined with data and/or acknowledgement frames. These

situations are described by the states SendingCF_Poll, SendingData$CF_Poll,

SendingCF_Poll$CF_Ack and SendingData$CF_Poll$CF_Ack. Depending on the

case, the station can answer to the PC with data (iniMPDU?), with an acknowledge-

ment frame (iniCF_Ack?) or can refuse the schedule (iniNull?). In any case, the

automaton returns to state Polling.

If the scheduled station is ready to transmit to another station, the automa-

ton, depending on the medium state (actions phyIdle? or phyBusy?) will alternate

between STAtoSTABusy and STAtoSTAIdle states during a medium’s PIFS period

of inactivity, indicating the conclusion of the communication process between the

stations or a timeout.

To finish the CFP, the PC has to wait a SIFS period of medium inactiv-

ity in state Polling and then sends either a CF End+CF Ack frame (state

SendingCF_End$CF_Ack) or a CF End frame (state SendingCF_End). The automa-

ton then moves to state Init.

4.1.3 Stations in the PCF

During the PCF, the station (see Figure 4) leaves the state Init for various reasons.

The first is when the station processes a MPDU (iniMPDU?). In this case the

station behaves in a similar way to the stations receiving data in pure DCF, i.e.

the station stays at ReceivingData until the transmission of the data is complete.

The second is when the station is scheduled by the PC. The station moves to state

ReceivingCF_Poll or ReceivingDataCF_Poll, depending on the case, and then

to Pooled. The scheduled station responds with a) Null (state SendingNull), b)

CF-Ack (state SendingCF_Ack), c) data combined with an acknowledgment (state

SendingData$CF_Ack) or d) data (state SendingMPDU). If the automaton has sent

data, it will be acknowledged (state ReceivingAck). Then the station returns to

state Init.

4.1.4 Carrier Sensing Function

The carrier sensing function seen in Figure 5 combines the physical and virtual

sensing.

The initial state Idle indicates that the medium sensing function has detected

that the medium is free. BusingNAV and BusingPHY are states that represent when

the medium is considered to be busy by virtual and physical sensing, respectively.

This detection is modeled by read operations (navBusy? or phyBusy?). After de-

tection, the sensing function notifies the sending station of the current medium

situation (busy! and csm:=BUSY). The detection of the medium as busy by the
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Init

WaitSIFS
local<=SIFS

ReceivingData

SendingACK
local<=ACK_TIME

ReceivingDataPoolingPolled
local<=SIFS

SendingMin
local<=MIN_DATA_TIME

SendingMPDU
local<=MPDU_MAX_TIME

SendingNull

SendingCF_Ack

ReceivingData$CF_Poll

ReceivingCF_Poll

SendingData$CF_Ack
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iniMPDU?
local:=0,
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destiny==0

endMPDU?
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local==SIFS
iniACKm!
local:=0

endACKm!
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destiny:=0

local==ACK_TIME

local:=0,
destiny:=0

iniCF_Poll?
local:=0,
writeAck:=false, readAck:=false

endMPDU?
local:=0

local:=0
local==SIFS && !writeAck endMPDUm!

local:=0

local==MIN_DATA_TIME

local:=0,
writeAck:=false

iniMPDUm!
local:=0

local==SIFS && !writeAck local>=MPDU_MIN_TIME
endMPDUm!
local:=0, readAck:=true

iniData$CF_Poll?
local:=0, writeAck:=true, readAck:=false

iniNullm!

local==SIFS && writeAck
local:=0 iniCF_Ackm!

local==SIFS && writeAck
local:=0,writeAck:=false

iniData$CF_Ackm!

endACK?
local:=0

iniACK?
local:=0

cfAck?

phyIdle?
local:=0

phyBusy?
local:=0

noCfAck?

Fig. 4. Station in the PCF

Idle

Both

Nav Phy

BusingNAV

IdleingNAV

BusingPHY

IdleingPHY

navBusy?

navBusy?

phyBusy?

navIdle?

phyBusy?

phyIdle?

navIdle?phyIdle?

busy!
csm:=BUSY

idle!
csm:=IDLE

busy!
csm:=BUSY

idle!
csm:=IDLE

Fig. 5. Carrier Sense Function

virtual and physical sensing is identified by the states Nav and Phy, respectively.

Whichever mechanism is active, the automaton moves to state Both if the medium

is detected as busy. In returning to state Idle, the automaton notifies that the

medium is free (idle! and csm:=IDLE).

4.1.5 Physical Medium

The automaton in Figure 6 models the possibility of collision and breaks down the

information that is destinated to distinct stations.

The automaton stays in state Init until a station starts or finishes the transmis-

sion of a frame. One of the edges that connects Init to state RcvPacket is activated

and the variable packetMode) registers which type of event has activated the tran-

sition. Although time does not affect state RcvPacket (urgent state), interleaving

among the automata can occur and collisions are represented by incrementing the

variable collision. Afterwards, the automaton moves to state TransPacket and

then to state NotCollision, if no collision has been registered (collision == 0)

or to state Collision if a collision has occurred (collision > 0).

In state Collision the collision counter is decreased to zero and the automaton

moves to state Discard and then to state EndFrame and Init.
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Fig. 6. Physical Medium

If the transmission is of a DFC typical frame, the automaton signals to the

receiving station that the frame transmission has started or finished (from state

NotCollision). This is done according to the variable packetMode. Then, the

automaton moves to state EndFrame.

As regards combined frames the automaton breaks down the acknowledgment

information presented in previous frames. To model this behavior, two channels are

used: noAck and cfAck. Thus, if the frame belongs to the acknowledgement family

(CF-Ack+CF-Poll, CF-Ack+Data, CF-Poll+CF-Ack+Data, CF-End+CF-Ack), a

write operation is done in channel cfAck. If the frame is one of CF-Poll, CF-

Poll+Data, Null, CF-End, Beacon or MPDU, a write operation in channel noAck

occurs. The frames that are not addressed to any station in particular (the frames
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of broadcast beacon, CF-End e CF-Ack+CF-End) are processed by the automaton.

4.2 Verification

We verified properties of the IEEE 802.11 MAC protocol for several different au-

tomata networks. Firstly, the modes DCF and PCF were validated in isolation.

Then, we verified properties in scenarios with workstations operating in either mode.

As the obtained results for the modes in isolation were compatible with the ones

found when they coexist in time, we have only described the latter.

The described results were obtained for a scenario with three workstations oper-

ating in DCF mode, two in PCF mode and a Point Coordinator (PC) workstation.

This scenario was considered sufficient, since all states are reachable, including those

related to the backoff function of the DCF mode. We experienced state explosion

when verifying some properties in scenarios with more components.

For the chosen configuration, the automata network was made up of 14 processes.

The three workstations running in DCF mode were modelled with the following pro-

cesses: dcf1, dcf2 and dcf3, for modelling the task of sending messages (instances

of the automaton shown in Figure 2); dcfcs1, dcfcs2, dcfcs3, for modelling the

carrier sensing function (instances of the automaton shown in Figure 5); and rdcf1,

rdcf2 and rdcf3 for modelling the message receiving tasks (instances of the au-

tomaton shown in Figure 1). The two workstations running in PCF mode were

modelled with the processes pcf1 and pcf2 (instances of the automaton shown in

Figure 4); the PC was modelled with processes pc (instance of the automaton shown

in Figure 3) and pccs, for modelling the medium sensing function (instance of the

automaton in Figure 5); finally, the physical medium was modelled with process

phy (instance of the automaton shown in Figure 6).

For verifying the properties, UPPAAL 3.4.11 was used running on a Computer

Intel Celeron with 2.3 GHz CPU clock and 1GB of RAM. The longest verifying

time, approximately 2 hours, was found to verify property 1. The other properties

were verified in the range of 15 ms (property 3) to 21 min (property 6).

The properties below specified in Ls were checked. Please refer to sections 4.1.1

to 4.1.5 for the meaning of the states and variables used.

Property 1 (Deadlock free) There is no deadlock.

A[]!deadlock. It was checked as true.

Property 2 (Collision occurrence) Accesses to the medium are subject to colli-

sions.

This property was verified using the formula A[]!phy.Collision. This formula

is the negation of the property, i.e., it states that for all paths it is always true that

no collision will occur in the physical medium (occurrence of collision is represented

by the Collision state). It was checked as false.

As stated in property 5, however, collisions do not occur in PCF mode.

Property 3 (Backoff livelock) If a workstation backs off while attempting to

transmit, it may not gain access to the medium again.
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We used the formula dcf1.InitBackoff-->dcf1.EndBackoff, which represents

the negation of the property. It represents the fact that, for all paths if a process

in DCF mode (dcf1) initiates backoff (enters the InitBackoff state), it eventually

completes it (enters the EndBackoff state). This formula was checked as false.

Consequently, the property is true. If a process does not complete the backoff

procedure, it does not obtain access to the medium.

Property 4 (Collision livelock) A workstation may remain infinitely in colli-

sion.

The formula dcf1.EndBackoff-->dcf1.Transmitted represents the negation of

the property, i.e., for all paths if a process in DCF mode (dcf1) terminates

backoff (EndBackoff state), then it becomes eventually able to send a message

(Transmitted state). This formula was checked as false. Hence, there is no guaran-

tee that a station will transmit even if the backoff procedures of previous collisions

have finished.

Property 5 (Exclusive medium access in PCF) In PCF mode, at most one

workstation at a time has access control to the medium to transmit its messages.

The formula A[](mode==PCF imply !phy.Collision) asserts it. I.e., while op-

erating in PCF mode, no collision might happen (process phy does not enter state

Collision). This formula was checked as true.

Property 6 (Timely access) If the PC workstation needs to access the medium,

it will do so within a limited time.

The formula: pc.InitPCF --> pc.Polling && pc.maxPCF

<= (2*PIFS + MAX_DCF_COM_TIME + BEACON_TIME) was checked as true.

This formula states that (for all paths) if the PC initiates the contention free

period (InitPCF state), it will eventually reach a state where it polls a station

(Polling state) and the clock variable maxPCF has value equal or less than (2*PIFS

+ MAX DCF COM TIME + BEACON TIME). This is the maximum time needed

for a station to send a packet of maximum size using RTS/CTS and receive an

acknowledgment (see section 4.1.5 for the meanings of these constants). This is an

upper limit to the value of maxPCF since its value is set to zero when the PC enters

the InitPCF state. Other workstations (other than PC) do not have guaranteed

access to the medium (as stated by properties 3 and 4).

Property 7 (DCF does not interfere in PCF) If the mode is PCF, a work-

station in DCF mode can not use the medium.

The formula E<>(mode==PCF && dcf1.CanTransmit) was checked as false, in-

dicating that in PCF mode a workstation operating in DCF mode (dcf1) can not

start a transmission (i.e., it cannot enter the CanTransmit state).

Property 8 (Reachability property) Every state of the automaton network is

reachable.

This property was verified using formulas of the form E<>(Process.State), for

each combination of Process and State of the automaton network. All the variations
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were checked as true. It means that all states of all processes of the system are

reachable from the initial state of the automaton network. Thus, we considered the

presented models as representative of the protocol functionality.

In summary, the above properties describe the main characteristics of the IEEE

802.11 MAC protocol which are: (a) the modes DCF and PCF are deadlock-free

(property 1) (b) the DCF mode follows a best-effort policy, since no guarantee

about message transmission is given (properties 2, 3 and 4) and (c) even coexisting

with DCF, the PCF mode gives timing guarantees (properties 5, 6 and 7). These

characteristics indicate the possibility of using the analysed protocol standard for

supporting applications with QoS or timing requirements (in PCF mode).

5 Conclusion

We have presented a formal verification and specification of the MAC layer defined

in the IEEE 802.11 protocol standard, where both of its coordination functions

(DCF and PCF) were considered in an integrated way. These functions have only

been considered in isolation up to now.

The considered protocol standard is very complex and required careful modelling

work. Using scenarios with a PC workstation, three DCF and two PCF worksta-

tions, we have verified several properties of the IEEE 802.11 without facing the

state-explosion problem. We believe that such scenarios are representative since

all states are reachable. Among the verified properties we emphasize the ability

of workstations to have medium access within a bounded known time and so the

ability of the IEEE 802.11 to support applications that require timing guarantees.

The timing behaviour of the IEEE 802.11 standard has not satisfactorily been con-

sidered before in the context of formal verification. Indeed, the results obtained

by this work can be used to substantiate the use of IEEE 802.11 protocols in new

application domains in which communication timeliness is a reliability issue.

In this version, modeling scenarios where two or more BSAs could overlap total

or partially producing collision of beacon frames were not considered. Modeling

these situations is a future goal.

Finally, the IEEE 802.11 standard is also often applied to mobile systems, where

workstations may move during the system operation. This may generate situations

of temporary failures, where workstations cannot be seen by others. Incorporating

mobility into the specification should also be part of future work.
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