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In this work, a study of the crystalline perfection of an aluminium single crystal

is presented. The study shows that, from three-dimensional neutron diffraction

rocking curves, it is possible to characterize the individual crystalline domains of

a multidomain crystal. From a macroscopic point of view, the determination of

the domains allows an evaluation of the crystalline perfection of the crystal

under study. Three-dimensional rocking curves have been obtained by neutron

diffraction from a large mosaic aluminium crystal. Construction of a contour

map of individual domains made it easier to determine the breadth and relative

intensity of each domain. The angular distances between domains were also

determined.

1. Introduction
Baldochi et al. (1994) carried out a study of the crystalline

quality of large Czochralski-grown barium lithium fluoride

(BaLiF3) single crystals. In that study, certain characteristics of

neutron diffraction intensity curves (rocking curves) were

correlated with several parameters involved in the growth

method. As pointed out by the authors, neutrons are better

than X-rays for this purpose since they give information about

the bulk of the crystal. A neutron beam has, in general, a large

cross-sectional area and a sample can be completely immersed

in it. Furthermore, neutrons are highly penetrating particles

for most materials. These two characteristics together make it

easier to observe all crystalline domains of a single crystal,

particularly if it is bulky. An X-ray beam, on the other hand, is

much less penetrating than a neutron beam and has, in

general, a small cross-sectional area. Thus, X-ray diffraction

gives information about a very small surface portion of a large

crystal. A single domain is then observed, unless the beam

impinges upon a domain boundary. It is possible to use an

X-ray beam to observe many crystalline domains of a multi-

domain crystal, but a careful and exhaustive procedure must

be adopted in order to sweep the entire surface of the crystal,

which is undoubtedly very time consuming. Even then,

domains located in the innermost part of the crystal will never

be observed unless etching is used in the analysis.

Although the methodology employed in the study of

Baldochi et al. (1994) led to useful results, it is not suitable for

a complete characterization of the crystalline domains of a

sample. This is due to the fact that the methodology used two-

dimensional instead of three-dimensional neutron diffraction

rocking curves. In general, a two-dimensional rocking curve

shows only a few crystalline domains; such domains appear as

overlapping peaks. Except for those cases where the domains

are closely aligned in the direction of the measurement, only a

three-dimensional I–!–� rocking curve can show all the

domains of a crystal (I is the observed intensity of an hkl

reflection, and ! and � are two orthogonal rotations around

axes that are both orthogonal to the scattering vector of the

reflection). The domains are located at different regions in the

!–� grid. In principle, with a three-dimensional rocking curve

it is possible to determine the number of domains, their

relative intensities, the breadth of each one and the angular

dispersion between them. From a macroscopic point of view,

the determination of such characteristics allows an evaluation

of the crystalline perfection of the crystal under study. The

present work establishes a methodology for the analysis of the

crystalline quality of single crystals using three-dimensional

neutron diffraction rocking curves.

2. Experimental

A two-dimensional rocking curve can be obtained by turning

the crystal around the ! axis of an Eulerian cradle while the

intensity I of an hkl reflection is measured. During the

measurement, the neutron detector remains in a fixed position

at the scattering angle 2�hkl relative to the incident beam. This

is the so-called moving-crystal–stationary-detector procedure.

It corresponds to an ! scan in the normal-beam equatorial

geometry (Arndt & Willis, 1966). A three-dimensional I–!–�
rocking curve is formed using a set of two-dimensional I–!
rocking curves measured at different values of �, obtained by

stepping this angle in convenient intervals. Fig. 1 is a schematic

representation of the rotations used to obtain a three-

dimensional I–!–� rocking curve.

To carry out the measurements, an experimental arrange-

ment was assembled on the multipurpose neutron diffract-
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ometer installed at the IEA-R1 research reactor at IPEN. At

the time of the measurements, the reactor was operating at a

power of 2 MW thermal. The 200 reflection of a large mosaic

copper single crystal was used to obtain a monochromatic

beam. At a take-off angle of 36�460, the wavelength was

1.137 Å. The diffractometer was designed based on the

normal-beam equatorial geometry. In the arrangement used

for the rocking-curve measurements, the monochromatic

beam Soller collimator was replaced with a special collimator

which limits the vertical and horizontal divergences equally.

This is the same collimator used to perform neutron multiple

diffraction measurements on the instrument (Mazzocchi &

Parente, 1994, 1998). The beam cross section for this colli-

mator is 3.8 � 3.8 cm and the vertical and horizontal diver-

gences are ca 200. The experimental arrangement also included

a five-circle goniometer, which resembles an Eulerian cradle

except that it has an extra horizontal axis (�) appropriate for

use in neutron multiple diffraction measurements (Mazzocchi

& Parente, 1994).

The crystal used in the measurements was a mosaic alumi-

nium crystal shaped as a square plate, 7.6 � 7.6 � 1.3 cm, and

oriented with the (111) planes parallel to the square face. It

was attached firmly to a goniometer head with the [111]

direction approximately parallel to its central axis. The goni-

ometer head was fastened to the ’ axis of the five-circle

goniometer. This axis was rotated around the � axis until it

and the � axis became coaxial. Careful orientation of the

crystal in the neutron beam, in order to obtain the maximum

intensity of the 111 reflection, preceded the measurements.

The two-dimensional rocking curves were obtained by scan-

ning ! in steps of 0.05� with a count time of 2 min for each

step. Although the area of the crystal surface was larger than

the neutron beam cross section, the measurements were

carried out without any sweep of the crystal in the beam. To

obtain the three-dimensional rocking curve, the angle � was

varied in steps of 0.5�. Such a large step was possible since the

� scale is ‘stretched’ owing to the geometry of the measure-

ments (see x3.4). Scans in both angular directions ! and �
were made large enough to extend the background for a few

degrees on both sides of the curves.

To determine the instrumental broadenings for both ! and

� directions, we used a lithium fluoride (LiF) single crystal

grown by the Czochralski method (Hagenmuller, 1972). Two

two-dimensional 200 rocking curves were measured, one for

each direction, ! or �. The rocking curve in the � direction

was measured after a 90� rotation of the crystal around the ’

axis. This rotation was done in order to ensure that approxi-

mately the same region of the crystal used to obtain the

instrumental broadening in the ! direction was also used to

obtain the instrumental broadening in the � direction. A

careful Gaussian fit to both rocking curves showed that the

crystal had several domains. The domain with the smallest

values of the full widths at half-maximum (FWHMs) gave the

values for the instrumental broadening. These are both

represented by �K and were 0.191 and 0.913�, respectively, for

the ! and � directions.

3. Data treatment

The purpose of the data treatment was to obtain the intrinsic

three-dimensional crystalline domains of the aluminium

crystal. For this purpose, each experimental two-dimensional

rocking curve was fitted with Gaussians, followed by decon-

volution of the Gaussians. Both processes were first applied to

the rocking curves obtained in the ! direction and then to

those obtained in the � direction, the latter curves being

extracted from the set of the former curves. An interpolation

of points (Press et al., 1994) was performed prior to the

deconvolution in order to guarantee better quality of the

results. Contour maps were constructed with the deconvoluted

data, allowing an easier characterization of the crystalline

domains. All procedures employed in the data treatment are

briefly described below.

3.1. Deconvolution of Gaussians

Deconvolution (or unfolding) of instrumental broadening

from an experimental curve is, in general, a hard task with no

guarantee of success. According to Press et al. (1994), apart

from some mathematical problems, the process of deconvo-

lution has other practical shortcomings. It is quite sensitive to

noise in the input data and to the accuracy to which the

response function is known. In this work, all such problems

were overcome by simply assuming that the data must be fitted

with Gaussian functions prior to the application of the

deconvolution process. The process is then individually

applied to each Gaussian fit. In this case, deconvolution

becomes a straightforward mathematical process, without any

additional difficulties. Clearly, this kind of solution is possible

only because experimental neutron diffraction rocking curves

can be fitted with Gaussian functions with excellent results.

A computer program was written in order to deconvolute

the rocking curves. In a single run of the program, all Gaus-

sians of a two-dimensional rocking curve can be deconvoluted.

During the run, the deconvolution process is applied indivi-

dually to each Gaussian according to the sequence in which

they are listed in the input data. The output from the program

gives the data for the deconvoluted rocking curve, as well as

the parameters of each deconvoluted Gaussian. The program

was first applied to all two-dimensional I–! rocking curves,

using the instrumental broadening in the ! direction. Two-

dimensional I–� rocking curves were then extracted from the

set formed by the deconvoluted I–! rocking curves, one for
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Figure 1
A schematic representation of the rotations ! and � used to obtain a
three-dimensional I–!–� rocking curve.
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each value of ! in its interval of variation. In a similar manner,

using the instrumental broadening in the � direction, I–�
rocking curves were deconvoluted. It should be noted that

each interpolated point generates a new rocking curve in the

transverse direction. This is valid for both ! and � directions

and causes a substantial increase in the number of rocking

curves to be fitted and deconvoluted.

The three-dimensional rocking curve constructed from the

raw experimental data obtained with the aluminium crystal is

shown in Fig. 2(a). The three-dimensional rocking curve

shown in Fig. 2(b) was constructed after interpolation and

deconvolution of the two-dimensional rocking curves of

Fig. 2(a), forming the deconvoluted three-dimensional I–!–�
rocking curve for the aluminium crystal. Interpolation of

points is clearly seen when comparing the figures. An appre-

ciable change in the two-dimensional rocking curves that form

the surface enveloping the three-dimensional curve is also

clearly seen.

3.2. Fitting of data

The fits were performed by means of a computer program

that adjusts Gaussians to an experimental curve, using the

least-squares method in the fitting process. It is not worthwhile

to give a more detailed description of this program here. It

belongs to a well known class of computer programs which

perform the fitting of experimental curves with suitable

mathematical functions. The program gives as output all three

parameters of each Gaussian found in the fit, namely position,

maximum intensity and FWHM. It also gives the area under

each Gaussian, as well as the intensity points forming it.

Parameters and areas are given with their standard deviations.

An overall standard deviation for the fit itself is also given. A

serious drawback of this sort of program is that, in certain

cases, the number of Gaussians to be specified for the fit

becomes undefined. This happens when the curve to be fitted

has several overlapping peaks with poor separation between

them. This is the case in this work. A better description of the

problem and its solution is given below.

During fitting of the numerous rocking curves we have

verified that, after a certain number of Gaussians, the agree-

ment between experimental and fitted curves experiences no

substantial improvement. When the number of Gaussians

becomes too large, the fit becomes erratic, although without

spoiling the agreement. Figs. 3(a), 3(b) and 3(c) are plots of

the overall standard deviation � versus number of Gaussians n,

obtained by fitting neighbouring rocking curves with, succes-

sively, n = 1, 2, 3, 4 or 5 Gaussians. They show how the

agreement behaves with increasing n. Plots in the figures were

obtained with I–! rocking curves measured at, respectively, �=

89.5, 90 and 90.5�. It is remarkable how � changes by two

orders of magnitude when n goes from 1 to 3 for all three

rocking curves. From n = 3 onwards � tends to stabilize. For

this particular case, the number of Gaussians to be adopted

should be at least n = 3. However, a better choice of n still

depends on a qualitative evaluation of the fits, which should

take into account how a Gaussian is altered when passing from

one rocking curve to a neighbouring one. As a general rule for

a non-deformed domain, the parameters of successive Gaus-

sians, in particular the maximum intensity and FWHM, should

change monotonically on both sides of the maximum. To

ensure that the results of the fitting process are reliable, the fits

must be checked continuously in order to verify if the domains

follow the above behaviour. It is important to mention that,

depending on the particular case, the procedure for the

determination of n must be applied again when domains
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Figure 2
Three-dimensional I–!–� rocking curves constructed using (a) the raw experimental data obtained from the aluminium crystal and (b) after
interpolation and deconvolution.
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appear or disappear in the sequence of rocking curves. As an

illustration of the procedures described above, three Gaus-

sians were chosen to initiate the fitting in the cases corre-

sponding to Fig. 3.

3.3. Contour maps

A three-dimensional plot, like that of Fig. 2(b), does not

allow a complete visualization of the rocking curve. Some

details are always missing, unless the plot is rotated around a

vertical axis and several plots are shown. For a better visua-

lization of a three-dimensional rocking curve, a contour map

must be constructed with the same data as used in the three-

dimensional plot.

3.4. Reduction of the v scale

During determination of the instrumental broadening, we

observed that the breadths of the rocking curves, measured in

the directions ! and �, were very different. The breadth in the

� direction was ca 16 times that in the ! direction. Such a large

difference could not be attributed to intrinsic characteristics of

the crystal. In fact, as mentioned above, the crystal was rotated

by 90� for the measurement in the � direction to ensure that

essentially the same crystalline region was observed in both

measurements. If not exactly the same, these regions were very

alike in their characteristics. However, the enlargement of the

rocking curve in the � direction is in fact due to an

enhancement of the Lorentz factor (Metairon, 1999). This

factor depends on the inclination, with respect to the surface

of the Ewald sphere, of the trajectory described by a reciprocal

lattice point during rocking of the crystal. The more inclined

the trajectory, the more the rocking curve is enlarged. In an !
rocking of the crystal, the trajectory is almost perpendicular to

the sphere and a small enlargement occurs. On the other hand,

in a � rocking the reciprocal lattice point approximates to the

surface of the sphere at a grazing incidence and an enlarged

rocking curve results (Rossmanith, 1986; Metairon, 1999). In

order to reduce the enlargement in the � direction a correc-

tion factor fcorr was determined, which causes reduction of the

� scale. The reduction is such that the breadths of the two-

dimensional domains in one direction become of the same

order of magnitude as those in the other direction. The

correction factor was calculated by dividing the FWHM of a

rocking curve measured in the ! direction by the FWHM of

one measured in the � direction, provided these rocking

curves were measured in the same crystalline direction

according to the procedure adopted in the determination of

the instrumental broadening. The value of the correction

factor for the aluminium crystal is fcorr = 0.0633. Reduction of

the � scale is achieved by calculating the correct � using the

expression �corr = (� � �max)fcorr, where �max is the � coor-

dinate of the point of maximum intensity in the three-

dimensional rocking curve.

Fig. 4 shows the contour map constructed for the aluminium

crystal. In contrast with Figs. 2(a) and 2(b), Fig. 4 is plotted on

a reduced � scale where �max = 90�. The ! scale in the contour

map is equal to that used in Fig. 2.

3.5. Individual characterization of domains

The contour map of Fig. 4 contains all the information

required to allow an evaluation of the crystalline quality of the

aluminium crystal. Nevertheless, it is not a useful source of

information when individual characterization of the crystalline
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Figure 4
A contour map constructed for the aluminium crystal after deconvolution
in both ! and � directions. The � scale was reduced using �max = 90� and a
correction factor fcorr = 0.0633.

Figure 3
The overall standard deviation (�) versus number of Gaussians (n)
obtained by fitting I–! rocking curves, measured at (a) � = 89.5�, (b) � =
90� and (c) � = 90.5�, with one to five Gaussians.
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domains and the relationships between them are sought. To

achieve this objective, a contour map of the individual

domains must be constructed. The construction is carried out

using data collected from the outputs of the computer

program used for the deconvolutions. It should be noted that a

deconvoluted three-dimensional domain is formed via a

certain number of deconvoluted Gaussians. Using the three

parameters defining each such Gaussian, it is possible to

individualize the domain in the contour map. It is worth

mentioning that the direction assumed for the construction, !
or �, is irrelevant provided the same direction is used for the

entire contour map. Extending this procedure to all domains

of the crystal, a contour map of individual domains can be

constructed. Fig. 5 shows a contour map of the individual

domains constructed for the aluminium crystal. It combines

the five three-dimensional domains found in the analysis of

the crystal. Taking domain No. 3 (the highest one) as refer-

ence, the intensity levels assigned to the contour lines vary

according to the following: the blank region on the map is

zero, the first contour line corresponds to 0.3 � 104 counts, the

second to 0.6 � 104, the third to 0.9 � 104, the fourth to 1.2 �
104 and so on. The eleventh and last contour line corresponds

to 3.3 � 104 counts. To ascertain the intensity level of any

other domain is a matter of finding the number of the contour

line forming it.

Using the contour map of Fig. 5, the angular distances

between the individual domains and their relative intensities

and breadths can be determined. The procedures used to

acquire this information and the results obtained are

presented below.

4. Results

4.1. Breadths of the domains

The FWHM was assumed to be an adequate representation

of the breadth of a domain. Since the domains are three-

dimensional, two values for the FWHM were considered,

corresponding to directions ! and �. They are readily deter-

mined by first tracing orthogonal straight lines, intersecting at

the point of maximum intensity of a domain. The lines are

traced parallel to the ! and � axes. The FWHMs in both

directions are determined when the straight lines encounter

the contour line corresponding to half of the maximum

intensity.

Fig. 6 shows domain No. 3 of Fig. 5. In contrast with Fig. 5,

the scale used to define the 11 contour lines in Fig. 6 is formed

by the intensity levels 2982, 5965, 8947, 11 929, 14 911, 17 893,

20 876, 23 858, 25 840, 29 822 and 32 805 counts. Using the

values corresponding to the maximum intensity (35 787) and

half of the maximum intensity (17 893), the FWHMs for

directions ! and � were determined following the procedure

described above. They are indicated in Fig. 6 by �! and �� and

their values listed in Table 1, together with the values deter-

mined for the other domains. The corresponding values for the

mosaic spreads �! and �� are also listed in Table 1.

4.2. Angular distances between the domains

In a contour map like that of Fig. 5, the angular distance

separating two domains is represented by a line segment

uniting the points of maximum intensity in the domains.

Owing to the fact that ! and � are angular scales, any line

segment traced in the map is actually an arc of circle. Metairon

(1999) observed that, for the determination of the angular

distances, a spherical right triangle should be considered. In

such a triangle, if � is the hypotenuse, i.e. the angular distance

to be determined, �! and �� are the catheti, i.e. its compo-

nents along directions ! and �, and W (= 90�) is the opposite

angle to arc �, then according to the cosine law (Spiegel,

1968) the following relationships can be written:
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Figure 6
Determination of the FWHM of domain No. 3 of Fig. 5, for both ! and �
directions (�! and ��, respectively).

Figure 5
A contour map for the aluminium crystal, constructed with individual
domains.
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cos� ¼ cos�! cos�� þ sin�! sin�� cos W

¼ cos�! cos��:

To calculate � between two domains, the points of maximum

intensity in the domains must first be localized in the !–� grid

and then projected upon the axes ! and �. The angular lengths

of the two line segments determined by the projections are

then the values to be assigned to the rectangular components

�! and ��. With these two values, � can be easily calculated

using the expression above. Table 2 lists the distances �
calculated for the ten possible combinations between the

domains of the aluminium crystal. The corresponding values

for �! and �� are also listed in Table 2. As pointed out by

Metairon (1999), � can also be calculated to a good approx-

imation by assuming a planar right triangle and using the

Pythagorean theorem, i.e. �2 = �!
2 + ��

2 , provided �! and ��

are sufficiently small (no more than a few degrees).

4.3. Relative intensities

The relative intensities of the domains were calculated using

the areas of the deconvoluted two-dimensional Gaussians that

pass through the points of maximum intensity. Since the three-

dimensional domains exhibited a certain asymmetry, the two

Gaussians oriented in directions ! and � were considered for

each domain. The areas were calculated according to the well

known formula A = 2.5066Imax�, where the maximum intensity

(Imax) and the FWHM (�) are given in the output of the

program used for the deconvolutions. Finally, the arithmetic

mean Am of the two areas was calculated and used in the

determination of the relative intensity Ir of the domains.

Table 3 lists for each domain the areas A! and A�, obtained for

directions ! and �, respectively, the mean area Am , and the

relative intensity Ir. It should be noted that domain No. 3 was

taken as reference for the calculations.

5. Concluding remarks

In this work, a methodology for analysing the crystalline

perfection of single crystals has been presented. The use of

neutron diffraction enables the determination of the intrinsic

crystalline domains of a crystal, therefore allowing an

evaluation of its macroscopic crystalline perfection. Some of

the procedures adopted during the data treatment and the

determination of the characteristics of the domains are merely

suggestions of practical ways to obtain the results and they

should not be regarded as the only or best method to be used.

Other solutions can be found, particularly for the determi-

nation of the FWHMs of domains and their relative intensities.

Even the deconvolution of rocking curves is not absolutely

necessary, unless the intrinsic characteristics of the domains

are desired. Deconvolution is applied, or not, depending on

the particular analysis and the results expected from the

analysis.

It should be noted that, in this study, the aluminium crystal

was larger than the neutron beam cross-sectional area and no

scanning was performed during the measurements (see x2).

Taking into account the distance between the collimator exit

and the sample (35 cm), the vertical and horizontal diver-

gences, the beam dimensions, and the Bragg angle for reflec-

tion 111 (ca 14�), we have calculated that approximately 60%

of the crystal volume was immersed in the neutron beam

during the measurements, but this has not impeded a good

evaluation of the crystalline perfection of the crystal.

Concerning its quality, it could be said that the aluminium

crystal is not really a single crystal, although it was acquired as

being one. The existence of five domains separated by angular

distances ranging from 0.138 to 0.563� (see Table 2) corrobo-

rates the above assertion. Use of such a crystal in a given

application will depend on the particular needs of the appli-

cation. It is important to note that the user of a crystal is the

best judge if its quality is adequate, or not, for an intended use.

The authors are indebted to Dr Sonia L. Baldochi and Dr

Izilda M. Ranieri, from the Crystal Growth Laboratory at

IPEN-CNEN/SP, for providing the LiF single crystal used in

this study. We are also grateful for financial support given by

the International Atomic Energy Agency (IAEA, project No.

6974/R1/RB) and the Conselho Nacional de Desenvolvimento

Cientı́fico e Tecnológico (CNPq) (contract No. 400397/93-5-
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Table 2
Angular distances (�) between the five domains found in the aluminium
crystal.

Domains �! (�) �� (�) � (�)

1 and 2 0 0.151 0.151
1 and 3 0.100 0.246 0.266
1 and 4 0.200 0.356 0.408
1 and 5 0.275 0.491 0.563
2 and 3 0.100 0.075 0.138
2 and 4 0.200 0.205 0.286
2 and 5 0.275 0.340 0.437
3 and 4 0.100 0.110 0.149
3 and 5 0.175 0.245 0.301
4 and 5 0.075 0.350 0.154

Table 3
Relative intensities (Ir) of the domains in the aluminium crystal.

Domain A! A� Am Ir (%)

1 3661 3722 3692 19.70
2 6959 9952 8456 38.26
3 20059 24147 22103 100.00
4 15423 18684 17054 77.16
5 1822 3356 2589 11.71

Table 1
FWHM (�) and standard deviation (�) for both ! and � directions,
determined for the five crystalline domains of the aluminium crystal.

Domain �! (�) �� (�) �! (�) �� (�)

1 0.123 0.125 0.052 0.053
2 0.117 0.168 0.050 0.071
3 0.224 0.269 0.095 0.114
4 0.206 0.250 0.087 0.106
5 0.095 0.176 0.040 0.075
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