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ABSTRACT

A nonlinear model predictive control (NMPC) is applied to a
slurry polymerization stirred tank reactor for the production
of high-density polyethylene. Its performance is examined to
reach the required mean molecular weight and comonomer
composition, together with the temperature setpoint. A com-
plete phenomenological model including the microscale, the
mesoscale and the macroscale levels was developed to rep-
resent the plant. The control algorithm comprises a neural
dynamic model that uses a neural network structure with a
feedforward topology. The algorithm implementation con-
siders the optimization problem, the manipulated and con-
trolled variables adopted and presents results for the regu-
latory and servo problems, including the possibility of dead
time and multi-rate sampling in the controlled variables. The
simulation results show the high performance of the NMPC
algorithm based in a model for one-step ahead prediction
only, and, at the same time, attests the strong difficulty to
control polymer properties with dead time in their measure-
ments.
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RESUMO

Uma estratégia de controle preditivo não linear é aplicada a
um reator tanque agitado de polimerização em lama para a
produção de polietileno de alta densidade. O desempenho
do controle é analisado no sentido de se obter o peso mole-
cular médio numérico, composição de comonômero e tem-
peratura desejados. Um modelo fenomenológico completo
considerando as micro, meso e macro escalas de modela-
gem foi desenvolvido para representar a planta. O algoritmo
de controle compreende um modelo interno baseado em re-
des neurais com topologia “feedforward”. A implementação
do algoritmo contempla o problema de otimização, as va-
riáveis manipuladas e controladas adotadas e são apresenta-
dos resultados para os casos de problema servo e regulatório,
incluindo-se a possibilidade de tempos mortos e múltiplas
taxas de amostragem nas variáveis controladas. Os resulta-
dos de simulação mostram o bom desempenho do algoritmo
NMPC baseado em um modelo neural treinado para a predi-
ção da variável de saída apenas um instante de tempo a frente
e, ao mesmo tempo, atestam a dificuldade de controlar dire-
tamente as propriedades do polímero com a ocorrência de
tempo morto na medição.

PALAVRAS-CHAVE : Polimerização de olefinas, controle
preditivo, redes neurais.
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1 INTRODUCTION

In the polymerization industry, there is considerable incen-
tive to develop real-time optimal strategies that will result in
the production of polymers with desired molecular proper-
ties. In this sense, the production of polymers with specified
end-use properties means that process variables such as tem-
perature and molecular weight must be controlled.

The difficult to measure controlled variables, the existence
of interactions, dead time and constraints, added to the non-
linear and multivariable nature (Schork et al., 1993, Ozkan
et al., 2001), pose a challenger problem for the control of
polymerization reactor. In many plants, there is a heuristic
strategy to control the output process variables. The devel-
opment of control strategies for polymerization reactors re-
quires an appreciation of what the important properties are
and how they relate to variables within the reactor and fur-
thermore, what inputs are available. Penlidis et al. (1992)
show that simple models that do not require a heavy compu-
tational load but capture all the essential process features, are
easily amenable to reactor optimization and control studies.

Model Predictive Control (MPC) refers to a class of algo-
rithms that compute a sequence of manipulated variable ad-
justments in order to optimize the future behavior of a plant.
In recent years, there is a considerable literature on the MPC
technology, including overviews, industrial applications and
its main features (Qin and Badgwell, 1997, 2000, Diehl et
al., 2002).

Continuous polymerization processes, such as slurry tech-
nology, appear to be suitable for the model predictive con-
trol (Rovaglio et al., 2004, Jeong et al., 2001) because,
among other things, these processes are multivariable, tightly
constrained and typically present a “fat” control problem
(Qin and Badgwell, 1997, Schnelle and Rollins, 1998) with
more manipulated variables (MV’s) than controlled variables
(CV’s), which suggests opportunities for process optimiza-
tion also. The nonlinear nature and the large operating
regimes with multi-grade productions led to the development
of nonlinear model predictive control (NMPC) in which a
more accurate nonlinear model is used for process prediction
and optimization (Henson, 1998).

Some references present the application of the advanced con-
trol algorithms in polymerization systems. Ibrehem et al.
(2008) worked with olefin polymerization (ethylene poly-
merization) in fluidized-bed catalytic reactors. The authors
developed a complete model that takes into account mass
and heat transfer between the solid particles and surround-
ing gas in the emulsion phase, and also present the applica-
tion of neural-network based predictive control for control-
ling the temperature of the emulsion system. Other recent
work (Gandhi and Mhaskar, 2008) considers the problem of

control a styrene polymerization process subject to input con-
straints and destabilizing faults in the control actuators. For
the batch and semi-batch polymerization reactors in particu-
lar, additional difficulties arise concerning process variables,
such as reactor temperature and pressure, which have to fol-
low set-point trajectories to assure the quality of the final
product. Fontes et al. (2006) show the results and procedures
associated with the application of a fuzzy control strategy in
a semi-batch reactor for the production of nylon 6, includ-
ing variable set-points for pressure and temperature. Nagy
et al. (2007) present the benefits of nonlinear model pre-
dictive control (NMPC) for the setpoint tracking control of
an industrial batch polymerization reactor, considering. Ac-
cording to the authors, two different control problems arise in
batch process operation, namely, the end-point property con-
trol, associated to the product quality at the end of the batch,
and the setpoint tracking, associated to the time-varying set-
point trajectories. Some references are related to the control
of particle size distribution. Dokucu et al. (2008) developed
strategies for the regulation of the particle size distribution
in a semibatch vinyl acetate (VAc)/butyl acrylate emulsion
polymerization system. Three integrated strategies that ex-
ploit model reduction to control the PSD (Particle Size Dis-
tribution) are presented and compared. The same polymer-
ization system was adopted to test a multi-rate model predic-
tive controller algorithm to control the full particle size dis-
tribution (Dokucu et al., 2008). Embiruçu and Fontes (2006)
presented closed-loop results related to the same system de-
scribed in Figure 1 considering, in this case, Ziegler-Natta
and Phillips catalysis. The authors suggest an approach for
the generalized predictive control algorithm, a linear predic-
tive controller, to consider multiple sampling rates in the con-
trolled variables.

This work presents the computational implementation of a
predictive control algorithm with nonlinear internal model
applied to an industrial copolymeritzation reactor of ethy-
lene (monomer) and 1-buthene (comonomer) with Ziegler-
Natta catalysis. Figure 1 represents schematically the reac-
tor. The process comprises the production of high density
polyethylene in stirred tank reactor. Together with ethylene
and 1-buthene, hydrogen, nytrogen and n-hecane (solvent),
catalyst and cocatalyst (both in n-hexane solution) are fed
continuously. The polymer is insoluble in the solvent and
the slurry is discharged for posterior drying. The reaction is
exothermic, the system is open loop unstable, and the reac-
tor temperature control comprises heat exchange in the re-
actor jacket and slurry cooling in external heat exchangers.
The polymer chain growth mechanism is the coordination
polymerization. The process depicted is related to the com-
mercial plant of Braskem Petrochemical Company placed at
Petrochemical Complex of Camaçari (Brazil). An identifica-
tion work, using correlation analysis, was accomplished in
this same industrial system (Fontes and Embiruçu, 2001).
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Figure 1: Schematic representation of the reactor.

The actual state of this process comprises the control of reac-
tor temperature and the trial of control the melt index through
an heuristic procedure that includes the adjustment of hydro-
gen/ethylene ratio in the reactor gas phase. The inexistence
of a systematic treatment, the intrinsic complexity of a poly-
merization process, marked by its multivariable nature, do
not warrant the specification of product with melt index val-
ues inside acceptable limits. In this sense, this work treats a
control problem that represents an expected increase in the
control technology applied to the process described. The
control problem comprises the need of expressive reduction
in the molecular properties variability through a multivari-
able strategy that considers all effects on these properties and
establishes directly setpoints for these.

This work presents the problem formulation and simulation
results based on a complete phenomenological model of the
system (Fontes and Mendes, 2005). An analysis of degree of
freedom of this model suggested the establishment of three
control variables. In accordance with the process reality and
the control problem presented, two polymer properties (aver-
age molecular weight and copolymer composition), outputs
of phenomenological model, were consider together with
the slurry temperature. Additional challenges such as dead
time and multi-rate sampling must be analyzed also owing
to the direct control of two polymers properties simultane-
ously with reactor temperature, whose time constant is much
smaller than others.

The optimization problem and simulation results for the reg-
ulatory and servo (grade transitions) problems are presented.
The neural model was identified to supply only one-step
ahead preditions. The simulation tests comprised the anal-
ysis of additional aspects such as dead time and multi-rate
sampling in the controlled varibales.

Section 2 presents the main aspects related to the phe-

nomenological and neural dynamic models, which are
treated in Fontes and Mendes (2001). Finally, section 3
presents the NMPC implementation, pointing out the ma-
nipulated and controlled variables, the optimization problem,
variables scaling and simulation results.

2 METHODS

The dynamic model

Fontes and Mendes (2001, 2005) present the details about the
phenomenological dynamic model used in this work. As dis-
cussed in Ray (1991), processes of the heterogeneous catal-
ysed olefin polymerization reactors may be decomposed in
three levels, namely the microscale (chemical kinetic as-
pects), the mesoscale (transport in the particle), and the
macroscale (overall mass and energy balance equations) lev-
els. This decomposition is used in the present work to con-
struct the reactor model. Some simplifying assumptions were
adopted such as the slurry volume constant and perfect mix-
ing of gas and liquid phases.

At the microscale level, one kinetic mechanism was adopted,
according to the coordination polymerization (Kiparissides,
1996), including initiation, propagation, chain transfer and
deactivation reactions (see Table 1). Two types of catalytic
sites are considered, each one with its own kinetic constants,
and the concept of the terminal model for copolymerization
(Soares and Hamielec, 1995, 1996) is implicit in the kinetic
equations.

ET, BT and CC are ethylene, 1-butene and cocatalyst, re-
spectively. The others symbols are commented in Nomen-
clature. The procedure employed at the microscale level
comprised the generation of balance equations for the
living

(

P1j
(n, m) , P2j

(n, m)
)

and dead polymer chains
(Dj (n, m)), the application of the method of moments
(Hutchinson et al., 1992) to enable the mathematical treat-
ment of average polymer properties, and the obtainment of
rate equations for the zero, first and second order moments.
Consumption rate expressions for the ethylene, 1-butene, hy-
drogen, cocatalyst and active site were obtained also. The
kinetic constants (Fontes and Mendes, 2001, 2005) were em-
ployed in Arrhenius equation form. Table 2 shows the values
of frequency factors for the rate constants. For the activation
energies of the propagation, chain transfer and deactivation
steps, respectively, the values of 29.4 kJ/mol, 50.2 kJ/mol
and 4.2 kJ/mol were taken.

At the mesoscale level, a non-uniform solid phase is consid-
ered and, in the particle, there is a radial distribution of chem-
ical species such as the living and dead polymer chains. The
multigrain model approach (Floyd et al., 1986) was adopted
combined with a simulation strategy applying orthogonal

Revista Controle & Automação/Vol.19 no.4/Outubro, Novembro e Dezembro 2008 419



Table 1: Kinetic mechanism for site typej. (j = 1, 2)

Initiation:

Pj(0, 0) + ET
Kpeej

→ P1j
(1, 0)

Pj(0, 0) + BT
Kpbbj

→ P2j
(0, 1)

Propagation:

P1j
(n, m) + ET

Kpeej

→ P1j
(n + 1, m)

P2j
(n, m) + ET

Kpbej

→ P1j
(n + 1, m)

P1j
(n, m) + BT

Kpebj

→ P2j
(n, m + 1)

P2j
(n, m) + BT

Kpbbj

→ P2j
(n, m + 1)

Chain Transfer:

P1j
(n, m)

Ktsj

→ Pj(0, 0) + Dj(n, m)

P2j
(n, m)

Ktsj

→ Pj(0, 0) + Dj(n, m)

P1j
(n, m) + H2

Kthj

→ Pj(0, 0) + Dj(n, m)

P2j
(n, m) + H2

Kthj

→ Pj(0, 0) + Dj(n, m)

P1j
(n, m) + ET

Ktmej

→ P1j
(1, 0) + Dj(n, m)

P2j
(n, m) + ET

Ktmbj

→ P1j
(1, 0) + Dj(n, m)

P1j
(n, m) + CC

Ktccj

→ P1j
(1, 0) + Dj(n, m)

P2j
(n, m) + CC

Ktccj

→ P1j
(1, 0) + Dj(n, m)

Deactivation:

P1j
(n, m)

Kdj

→ Cdj + Dj(n, m)

P2j
(n, m)

Kdj

→ Cdj + Dj(n, m)

collocation. One material balance on the macropartcile for
each specie was developed considering that convective mass
transfer inside macropartcile and the instantaneous variation
of its volume are negligible.

The assumption of a non-uniform species distribution on the
particle established the development of a general local bal-
ance (Fontes and Mendes, 2005), providing equations for the
moments of chain length distribution and for the active site
concentrations.

The macroscale comprised one mass balances for the liquid
and gas phases and another for the solid phase, for each one
component (ethylene, 1-buthene, hydrogen, solvent and ni-
trogen). Overall mass and energy balances were established
also.

Table 2: Frequency factors of the kinetic constants
(1/(mol.min))

Site 1 Site 2

Propagation:

Kp,ee 1.101×108 1.101×108

Kp,be 2.591×106 1.943×107

Kp,eb 8.290×107 8.290×107

Kp,bb 1.943×106 8.031×106

Chain transfer

Kt,s(min−1) 1.615×105 1.615×105

Kt,h 1.421×108 1.421×107

Kt,me 3.392×106 3.392×105

Kt,mb 3.392×106 1.615×105

Kt,cc 3.876×107 3.876×106

Deactivation

Kd 3×10−1 3×10−1

Despite the simulations tests, Table 3 presents the absolute
initial values of all inputs variables together with initial val-
ues for the weight-average molecular weight (WAMW) and
temperature.

Table 3: Initial absolute values for simulation tests.

Hydrogen feed flow 10 kg/h

Catalyst feed flow 0.075 kg/h

Comonomer feed flow 150 kg/h

Solvent feed flow 16000 kg/h

Cocatalyst feed flow 0.2 kg/h

Monomer feed flow 7500 kg/h

Water flow in the
reactor jacket

150000 kg/h

Water flow in the
external heat
exchangers

60000 kg/h

WAMW 122000

Temperature 84.6oC

The complete model is made of ordinary and algebraic equa-
tions. Adopting five internal collocation points in the parti-
cle, the differential algebraic system comprises 14 algebraic
equations and 267 ordinary differential equations, distributed
according to the Table 4. This expressive size and the long
simulation time turn the phenomenological model unsuitable
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for use in the predictive control applications.

Table 4: Complete dynamic model.

Number of
equations

Statistic moments
Active sites balance

216
12

Macroparticle mass
balances

25

Component mass balance
Overall energy and mass

balances

12
2

Algebraic equations 14

Total 281

The procedure adopted to obtain the neural models, used in
the predictive control algorithm, is presented in Fontes and
Mendes (2001). The neural network structure consists of a
feedforward topology with only one hidden layer and gives
one-step ahead prediction. The tangent hyperbolic function
was used in the hidden neurons and the linear function was
used in the output layer. The training was accomplished us-
ing the Levenberg-Marquadt algorithm with a learning rate
equal to 0.01 and the initial value for the Hessian adjustment
parameter was assumed equal to 0.9. A batch training proce-
dure was applied considering the minimization of the mean
squared error of each epoch.

The identification was conducted adopting one neural model
for each process output that can be represented by a NARX
(Nonlinear AutoRegressive with eXogeneous inputs) struc-
ture (Su and McAvoy, 1997, Doherty et al., 1997). The MISO
(Multiple Input Single Output) model, for each output, con-
siders all process inputs (feed rates of ethylene, catalyst, co-
catalyst, 1-butene, hydrogen, solvent and refrigeration wa-
ter), and one value of dead time for each input variable had
to be adopted also. Two data samples (training and test), pro-
vided from the phenomenological model (sampling period of
5 min), were adopted for the identification and a cross vali-
dation procedure was adopted in order to select the best num-
ber of hidden neurons for each MISO model, considering a
maximum number of 2000 training epochs. As it was to be
expected, in the nonlinear case a neural model with a feed-
forward structure leads to results that are more accurate for
short prediction horizons than for long prediction horizons.
Multi-step ahead prediction is however necessary to imple-
ment predictive control schemes.

2.1 Nonlinear model based control algo-
rithm

The predictive control algorithm for the slurry reactor has the
following features:

• Multiple inputs and multiple controlled variables.

• Simultaneous resolution of the optimization problem.

• Internal model comprising one neural model for each
control variable (MISO model) that includes all the ma-
nipulated variables adopted.

An analysis of the phenomenological model conducted to
achievement of 3 degrees of freedom for this and 3 variables
were selected to be controlled:

• Reactor temperature (Tr).

• Weight-average molecular weight (Mw).

• Average fraction of comonomer incorporated into the
polymer (XBT ).

This set of controlled variables poses additional challenges
for the control problem. First, there is the possibility of con-
siderable dead time in the measurement of outputs associated
with the polymer properties (Mw and XBT ) owing to the
slurry transport, drying and the analysis time. Second, pro-
cess variables such as temperature have a dynamic response
typically speed regard to the polymer properties, which sug-
gests the existence of multi-rate sampling in the controlled
variables. The closed loop simulation comprised the addi-
tional analysis of these two effects (dead time and multi-rate
sampling) on the control algorithm performance.

8 (eight) manipulated variables were adopted comprising
feed rates to the reactor and water flows related to the re-
frigeration system:

• Ethylene massic flow (FET ).

• Buthene massic flow (FBT ).

• Catalyst massic flow (FC).

• Cocatalyst massic flow (FCC).

• Hydrogen massic flow(FH2
).

• N-hexane massic flow (FNX).

• Water flow to the reactor jacket (FWC).

• Water flow to the external heat exchangers (FWT ).
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2.2 Optimization problem

Besides the nonlinear nature of plant, a nonlinear internal
model suggests also the possibility of a more efficient con-
troller, able to accomplish grade transitions, without changes
the catalytic system. These grade transitions are common in
the system studied and imply in an expressive change of the
operation point.

Adopting the controlled and manipulated variables listed in
the previous section, the predictive control algorithm com-
prises the following nonlinear programming problem, which
must be solved at each sampling period to generate the con-
trol moves.

Objective function

min
u(t)

E (t) =

(

P
∑

k=1

‖e (t + k)‖
2
R

)

+

(

M
∑

k=1

‖∆u (t + k − 1)‖
2
Q

)

, (1)

where the norm terms mean‖x‖2
Z = xT · Z · x, andt is the

current instant.

The control moves of each one MV
(u ≡ FET , FBT , FC , FCC , FNX , FH2

, FWC , FWT ) are
achieved as follows:

∆u (l) = u (l) − u (l − 1) , if l > t, (2)

∆u (l) = u (l) − u (t − 1) , sel = t, (3)

and the deviations from a desired response, over a predic-
tion horizon of length P must be achieved for each controlled
variable(y ≡ Tr, Mw, XBT ):

e (t + k) = yref (t + k) − [ŷ (t + k) + d] , (4)

whered = y (t) − ŷ (t).

Despite the options for specifying future CV behavior (Qin
and Badgwell, 1997), reference trajectory was adopted in this
work and a first order curve is drawn from the current CV
value to the setpoint according to the following expression:

yref (t + k) = αk · y (t) + ysp (t) ·
(

1 − αk
)

, k = 1, . . . , P
(5)

α is the time constant that establishes the response speed.

Constraints

Regarding to the input variables, the following constraints
must be considered:

ui ≤ u (t + k − 1) ≤ us, k = 1, . . . , M, (6)

∆ui ≤ ∆u (t + k − 1) ≤ ∆us, k = 1, . . . , M. (7)

Hard constraints are also considered for the output predic-
tions:

yi ≤ ŷ (t + k) ≤ ys, k = 1, . . . , P, (8)

where (u ≡ FET , FBT , FC , FCC , FNX , FH2
, FWC , FWT )

and(y ≡ Tr, Mw, XBT ).

The model constraints comprises the MISO neural model
identified for each CV, whose structure presents all the MV’s.
Each CV contributes with P equality constraints expressed as
follows:

ŷ(t+1) = Fy















y(t), y(t − 1), . . . ,
y(t − ny + 1), FET (t), . . . ,
FET (t − 1 − nETy

+ 2), . . . ,
FWT (t), . . . , FWT (t − 1 − nWTy

+ 2)















(9)

ŷ (t + 2) = Fy























ŷ (t + 1) , y (t) , . . . , y (t − nMw
+ 2) ,

FET (t + 1) , . . . ,
FET (t − 1 − nETy + 3) ,
. . . , FWT (t + 1) , . . . ,
FWT (t − 1 − nWTy + 3)























(10)

...
...

...

ŷ (t + P ) = Fy































ŷ (t + P − 1) , ŷ (t + P − 2) , . . . ,
y (t) , . . . , y (t − nMw

+ P ) ,
FET (t + P − 1) , . . . ,
FET (t − nETy + P ) , . . . ,
FWT (t + P − 1) , . . . ,
FWT (t − nWTy + P )































(11)
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The optimization problem presented has 8×M+3×P decision
variables (output predictions were also considered decision
variables in the problem formulation) and 8×M degrees of
freedom that is equal to the number of present and future
values of MV’s.

2.3 Scaling variables

In the system studied, there are enormously differences in
the typical values of MV’s and CV’s that should be consid-
ered in the penalty adjustments (weight matricesQ andR)
for the control tuning (Meadows and Rawlings, 1997). In
this sense, the scaling by variable transformation (Gill et al.,
1981) should be useful and provides certain desirable prop-
erties during the optimization process.

All the decision variables presented in the optimization prob-
lem were scaled trough the use of dimensionless deviation
variable (ddv):

vad =
v − vss

vss

, (12)

wherevss is the initial steady state considered in the simula-
tion tests.

2.4 Tuning procedure

The strategy employed for the tuning parameters adjustments
comprised the following aspects:

• Only the move suppression factors and horizons were
adjusted.

• The penalties on the deviations from the desired re-
sponse (matrixR) were fixed at 20 for all CV’s.

• The time constant of the reference trajectory was fixed
at 0.5 for all CV’s.

• The weights of each control move and output prediction
deviations were assumed constant along the prediction
horizon.

The limits used for all MV’s are in agreement with the data
range adopted during the neural models training (section 3).
Based on the melt index and density specifications and on
the operational practice, bounds were established for each
CV (table 5), regarding to its current setpoint.

The grade transitions simulations (servo problems) establish
changes in the output bounds or specifications. In this sense,
it was proposed the use of two trajectories to represent the

Table 5: Output specifications.

Variable Bounds

Tr ± 1 %

Mw ± 3 %

XBT ± 5 %

bounds of each output during the grade transition. Consider-
ing the use of hard constraints for the CV’s predictions (Eq.
8), the trajectory parameters in each case were always ad-
justed to reduce the effect of the output bounds on the op-
timization problem. Hence, in the case of setpoint increase,
the upper and lower trajectories must be speedy and sluggish,
respectively. In the case of setpoint decrease the opposed is
applied.

2.5 Measurement delay in the outputs

The occurrence of a dead time equals toθu sampling in-
tervals in some CV measurement leads to increase the pre-
diction horizon owing to the inclusion of present and fu-
ture MV’s values only after the firstθu output predictions.
To prove this fact, consider a SISO case where the internal
model is represented as follows:

ŷ (t + 1) = F (u (t) , y (t)) .

Considering thatym is the measured value from the plant
and that this measurement has a delay equals toθu, the pre-
dictions obtained at timet are:

ŷ (t + 1) = F (u (t − θu) , ym (t)) , (13)

ŷ (t + 2) = F (u (t − θu + 1) , ŷ (t + 1)) (14)
...

ŷ (t + θu) = F (u (t − θu + θu − 1) , ŷ (t + θu − 1)) ,(15)

ŷ (t + θu + 1) = F (u (t) , ŷ (t + θu)) , (16)

ŷ (t + θu + 2) = F (u (t + 1) , ŷ (t + θu + 1)) , (17)
...

ŷ (t + θu + P ) = F (u (t + θu + P − 1) ,
ŷ (t + θu + P − 1))

(18)

In the presence of a dead timeθu in the polymer properties
measurements (Mw andXBT ), the strategy adopted com-
prised the establishment of a prediction horizon equals to
P+θu, followed of elimination of the firstθu predictions.
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In some tests with a long prediction horizon, only a subset
of predictions, called coincident points (Qin and Badgwell,
1997), is selected and used in the optimization problem.

2.6 Simulations tests and discussion

The simulation tests were conducted in two steps compris-
ing the servo and regulatory problems. First, the controller
performance was analyzed considering one grade transition
without change in the catalytic system. For the regulatory
problem tests, the ability to reject some potential distur-
bances and to keep controlled variables in their setpoints
were verified.

In all tests, the process is represented by the phenomenolog-
ical model (Fontes and Mendes, 2001) and the control action
interval is always equals to 5 min.

2.6.1 Servo problem

In this section, simultaneous setpoint changes in the con-
trolled variables were applied according to table 6. Changes
in the specification limits were also imposed and the strategy
described in section 3.3 had to be used.

Table 6: Setpoint changes (grade transition).

Variable
initial setpoint

(ddv))
end setpoint

(ddv)

Tr 0 0.069

Mw 0 -0.123

XBT 0 0.069

The tests comprised two cases:

• Setpoint changes considering multi-rate sampling in the
controlled variables. Measurement intervals of 5 min
and 40 min were adopted for the temperature and poly-
mer properties (Mw andXBT ), respectively.

• Setpoint changes with a dead time equals to 30 min ow-
ing to delay in the molecular weight and comonomer
content measurements.

Despite the tuning procedure, an initial standard tuning was
employed as a reference for the adjustments in each case.
This standard tuning (table 7) provides an excellent control
performance in the absence of multi-rate sampling and mea-
surement delay in the outputs.

a) Servo problem with multi-rate sampling

Table 7: Standard tuning.

Parameters

Prediction horizon (P) 10

Control horizon (M) 2

Move suppression factors 0.1 for all inputs

Penalties on the output deviations 20 for all outputs
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Figure 2: Temperature. Measurement intervals of 5 and 40
min for bothMw andXBT . P=10, M=2 and control move
weights equal to 0.1.

Figures 2-3 present simulation results with measurement
intervals of 5 and 40 min for both molecular weight and
comonomer content. In both cases, the standard tuning (table
7) was employed. Results show a sensible drop in the con-
trol performance with the occurrence of ringing (excessive
oscillations) between sample points, owing to the increase
in the measurement interval for the polymer properties (Mw

andXBT ). On the other hand, Figure 4 shows that the per-
formance improvement can be easily achieved through the
increase in the prediction horizon and weights of control
moves.

Some results presented show the occurrence of CV’s values
outside the specification limits (constraints). This fact is not
related with the achievement of unfeasible solution for the
optimization problem, since the hard constraints established
according to Eq. (8) are imposed in the output predictions.

b) Servo problem with dead time

The same setpoint changes presented in table 4 were imposed
considering a dead time equals to 30 min in the molecu-
lar weight and comonomer content measurements. Although
the absence of multi-rate sampling, the Figure 5 presents the
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Figure 3: Molecular weight. Measurement intervals of 5 and
40 min for bothMw andXBT . P=10, M=2 and control move
weights equal to 0.1.

 

Figure 4: Molecular weight. Measurement intervals of 40
min for bothMw andXBT . M=2 and control move weights
equal to 0.5.

strong effect of dead time (“dt”) on the control performance,
with the occurrence of unstable behavior.

Despite the bad results achieved with the standard tuning,
a sensible improvement can be obtained with a prediction
horizon equals to 70 and weights of 0.5 or 1 for the control
moves (Figure 6).

2.6.2 Regulatory problem

Temperatures of ethylene and solvent feed streams were con-
sidered as potential disturbances. No one setpoint change in
the controlled variables was applied in this case.

Figures 7 and 8 present the temperature and comonomer con-

 

Figure 5: Molecular weight. Servo problem results without
and with dead time of 30 min in theMw andXBT . P=10,
M=2 and control move weights equal to 0.1.
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Figure 6: Molecular weight. Servo problem results with dead
time of 30 min in theMw andXBT . P=70, M=2 and control
move weights equal to 0.5 and 1.

tent profiles considering a dead time of 30 min in the polymer
properties measurements, and the using of standard tuning
(table 7). This test comprised the input of step perturbations
of 20 % and 30 % on the ethylene and solvent temperatures,
respectively. One more time, it can be detected a bad control
performance with closed loop instability.

Figure 9 shows that the increase in prediction horizon and
in the move suppression factors provides better results with
the effective disturbance rejection. For the same step per-
turbations, simulation tests with multi-rate sampling in the
controlled variables, without dead time, provided excellent
results, even with the standard tuning (table 7).
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Figure 7: Temperature. Regulatory problem results with
dead time of 30 min in theMw andXBT . P=10, M=2 and
control move weights equal to 0.1.
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Figure 8: Comonomer content. Regulatory problem results
with dead time of 30 min in theMw andXBT . P=10, M=2
and control move weights equal to 0.1.

2.6.3 Uncertainty of dead time

Since the measurement delay in a real process is not exactly
known and can vary over a very wide range, an uncertainty
of this must be accounted in designing an NMPC controller.

Applying weights of 0.5 for the each control moves and the
same horizons, Figures 10-11 present results with differences
between the internal model dead time and the dead time ef-
fectively practiced in the process. A regulatory problem was
considered with the input of a pulse perturbation on the sol-
vent feed temperature. The results show that it is possible
to achieve good performance even with a model dead time
equals to 1 hour and a measurement delay in the process
equals to 30 min. This also attests the robustness of the pre-
dictive control algorithm and denotes that the control perfor-
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Figure 9: Temperature. Regulatory problem results with
dead time of 30 min in theMw andXBT . P=70, M=2 and
control move weights equal to 0.5 and 1.
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Figure 10: Molecular weight. Regulatory problem results
with dead time error in the internal model. P=70, M=2 and
control move weights equal to 0.5.

mance, just as in the preceding sections, is directly related
to increase of dead time practiced in the polymer properties
measurements.

3 CONCLUSIONS

NMPC algorithm is applied to a slurry polymerization reac-
tor where temperature, weight-average molecular weight and
average fraction of comonomer incorporated into the poly-
mer are the controlled variables. Considering the absence of
multi-rate sampling in these outputs and delay in the polymer
properties measurements, the simulation results for servo and
regulatory problems show an excellent performance of the
control algorithm, adopting a speed tuning with prediction
and control horizons equal to 10 and 2, respectively, and
move suppression factors two hundred times smaller than the
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Figure 11: Comonomer content. Regulatory problem results
with dead time error in the internal model. P=70, M=2 and
control move weights equal to 0.5.

weights established for the output deviations.

The proposed control scheme represents advancement with
regard to the actual scheme, enabling the effective control
of macromolecular properties at desired values. Despite the
other procedures previously published, based in a linear in-
ternal model, the use of NMPC enables the implementation
of a more efficient controller, able to drive servo problems
featured by large grade transitions. In this sense, this work
also presents a proved strategy to handle the output restric-
tions during the transition.

The presence of considerable dead time or multi-rate sam-
pling in the output measurements increases the complexity of
the control problem. In this sense, the tuning procedure pro-
posed in this work, comprising only the control move penal-
ties and horizons adjustments, was capable to control all the
outputs and enough to warrant the closed loop stability.

Still without dead time and multi-rate sampling, the excellent
performance of NMPC together with the process stabiliza-
tion through the use of long prediction horizons show that the
internal neural model, trained for one step ahead prediction
only, is perfectly suitable for the predictive control applica-
tions.

The presence of considerable delay in the polymer proper-
ties measurements produces a more complex control prob-
lem than with the existence of only multi-rate sampling. Al-
though the adjustments of control move weights and/or pre-
diction horizon were efficient in this case, the uncertainty and
variability of dead time establishes the need of on-line esti-
mators for the molecular weight and comonomer content that
provide values of these outputs in the slurry stream. The suc-
cess of a NMPC algorithm, applied to a slurry reactor and

with direct control of mean molecular properties, depends
strongly in how these variables must be measured or esti-
mated.

Without the inclusion of dead time effect, the simulation re-
sults show that a control horizon equals to 2, a prediction
horizon between 10 and 20 and control move weights equal
to 0.5 can achieve satisfactory performance of NMPC for the
system analyzed.

Another stage of polymerization engineering of this system
could be reached through a direct control of end-use prop-
erties such as stiffness, impact strength and glass transition
temperature, or definition of optimal operation conditions to
achieve the desired values for these (reverse polymerization).
In both cases, more complex relations, multivariable, must be
determined between end-use and molecular properties such
as molecular weight distribution (Latado et al., 2001, Valap-
pil J. and Georgakis C., 2002, Farkas et al., 2004, Grosso and
Chiovetta, 2005 and Asteasuain et al., 2003).
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NOMENCLATURE

Cd deactivated site.

D (n, m) dead polymer chains withn monomer units andm
comonomer units, mol/l;

d disturbance term used in conventional MPC feedback;

e deviations from the reference trajectory;

Fi feed flow rate of componenti, ton/h;

k time in discrete system;

Kpee
, Kpbb

propagation rate constants,l/ (mol · min);

Kpeb
, Kpbe

propagation rate constants,l/ (mol · min);

Kts rate constant forβ-hydride elimination, min−1;

Kth rate constant for transfer to hydrogen,l/ (mol · min);

Ktme rate constants for transfer to monomer,
l/ (mol · min);

Ktmb rate constants for transfer to monomer,
l/ (mol · min);

Ktcc rate constant for transfer to cocatalyst,l/ (mol · min);

Kd deactivation rate constant, min−1;
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Mw weight-average molecular weight;

M control horizon;

ny number of output values in the neural network input
layer;

nuy number of past values of inputu in the MISO model for
outputy;

P prediction horizon;

P1 (n, m) living polymer chains withn monomer units and
m comonomer units, with terminal monomer;

P2 (n, m) living polymer chains withn monomer units and
m comonomer units, with terminal comonomer;

P (0, 0) active site;

td dead time;

Tr reactor temperature,oC;

t time;

u manipulated variable;

XBT average fraction of comonomer incorporated into the
polymer;

y real process output (controlled variable);

ŷ model output;

yref reference trajectory in MPC objective;

ysp setpoint of outputy;

∆u control move;

θu dead time of output related to inputu;

α trajectory time constant;

Subscripts:

ET ethylene;

BT 1-butene;

C catalyst;

CC cocatalyst;

NX solvent (n-hexane);

H2 hydrogen;

WC water to the reactor jacket;

WT water to the external heat exchangers;

i lower bound;

s upper bound.

j site type

ss steady state;

Superscripts:

j site type;

ad dimensionless variable.

Abbreviations

sp setpoint.

dt dead time.

MISO Multiple Input Single Output.

ddv dimensionless deviation variable.

CV controlled variable.

MV manipulated variable.
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