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Symplectic unitary representations for the Galilei group are studied. The formalism
is based on the noncommutative structure of the star-product, and using group theory
approach as a guide, a consistent physical theory in phase space is constructed. The state
of a quantum mechanics system is described by a quasi-probability amplitude that is in
association with the Wigner function. As a result, the Schrödinger and Pauli–Schrödinger
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to be brought to the realm of spatial noncommutative theories.
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1. Introduction

The notion of phase space in quantum mechanics arose in 1932, in a seminal paper

by Wigner,1 motivated by the problem of finding a way to improve the quantum

statistical mechanics. Wigner introduced his formalism by using a kind of Fourier

transform of the density matrix, ρ(q, q′), giving rise to what is nowadays called

the Wigner function, fW (q, p), where (q, p) are the coordinates of a phase space

manifold (Γ).1–4 The Wigner function is identified as a quasi-probability density
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in the sense that fW (q, p) is real but not positive definite, and as such cannot

be interpreted as a probability. However, the integrals ρ(q) =
∫

fW (q, p)dp and

ρ(p) =
∫

fW (q, p)dq are (true) distribution functions.

In the Wigner function approach, each operator, A, defined in the Hilbert space,

H, is associated with a function, aW (q, p), in Γ. This procedure is precisely specified

by a mapping ΩW : A → aW (q, p), such that, the associative algebra of operators

defined in H turns out to be an algebra in Γ, given by ΩW : AB → aW ⋆ bW , where

the star-product, ⋆, is defined by

aW ⋆ bW = aW (q, p) exp

[

i~

2

(
←

∂

∂q

→

∂

∂p
−
←

∂

∂p

→

∂

∂q

)]

bW (q, p) . (1)

The reverse is also true: each function, aW (q, p), in phase space, Γ, is associated

with an operator, A, defined in the Hilbert space, H.2 The result is a noncommuta-

tive structure in Γ, that has been explored in different ways.2–25 In particular, the

Wigner function is established directly from experiments, in some cases, and such

a result has a strong physical appeal to bring the Wigner formalism to different

fields.26,27 This is the case for studies of the Wigner function in (spatial) noncom-

mutative theories.28,29 This development is important since the noncommutative

theory has found applications in different areas. Indeed, it has been associated

with the behavior of non-Abelian gauge fields, with phenomenological effects in

condensed matter physics, including aspects of phase transitions,30–44 and string

theory. In the latter case, Connes, Douglas and Schwarz45 showed that an M-

theory can be equivalent to a supersymmetric Yang–Mills field in a noncommutative

torus — a result explored by Seiberg and Witten.46

Recently,47–51 unitary representations of symmetry Lie groups have been

developed on a symplectic manifold, exploring the noncommutative nature of the

star, or Groenewold–Moyal, product and using the mapping ΩW .47–49 The scalar

representation of Lorentz group for spin 0 and spin 1/2 leads to, for instance, the

Klein–Gordon and Dirac equations in phase space, such that the wave functions

are closely associated with the Wigner function.47,48 This provides a fundamental

ingredient for the physical interpretation of the formalism, showing its advantage in

relation to other attempts to explore, for instance, the Schrödinger equation in phase

space;13–15 such an association is not evident, a fact that represents a hindrance to

reach a physical interpretation. In terms of nonrelativistic quantum mechanics, the

proposed formalism has been used to treat a nonlinear oscillator perturbatively,

to study the notion of coherent states and to introduce a nonlinear Schrödinger

equation from the point of view of phase space. In the present work, we apply this

symplectic formalism to find the Wigner function for the Landau problem, bringing

this method for noncommutative theories.52,53 Beyond this theoretical aspect, we

have to find new solutions for the Landau problem in phase space.

The presentation is organized as follows. In Sec. 2, the symplectic Hilbert

space is introduced and we study representations for the Galilei group, deriving

the Schrödinger equation. In Sec. 3, Pauli–Schrödinger equation in phase space is

1350013-2

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
3.

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 F

E
D

E
R

A
L

 D
A

 B
A

H
IA

 o
n 

12
/1

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 28, 2013 8:51 WSPC/Guidelines-IJMPA S0217751X13500139

Solutions for the Landau Problem Using Symplectic Representations

derived. In Sec. 4, the Landau problem is considered in phase space, where both

quasi-amplitudes of probabilities and the Wigner function are derived. In Sec. 5,

final concluding remarks are presented.

2. Schrödinger Equation in Phase Space

In order to study the unitary representations of Lie groups in phase space, it is

essential to consider, in a general way, the notion of phase space from which a

Hilbert space is introduced.

Consider an analytical manifold M where each point is specified by coordinates

q. The coordinates of each point in the cotangent-bundle Γ = T ∗
M are denoted by

(q, p). The 2N -dimensional manifold Γ is equipped with two-form, that is defined by

ω = dq ∧ dp

and is called the symplectic form. The operator

Λ =

←

∂

∂q

→

∂

∂p
−
←

∂

∂p

→

∂

∂q
(2)

with the symplectic form leads to the Poisson bracket,

{f, g} = ω(fΛ, gΛ) = fΛg ,

where

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
,

with f = f(q, p) and g = g(q, p). The manifold Γ is then called the phase space,

and the set of analytical functions f(q, p) is denoted by C∞(Γ). The vector fields

over Γ are given by

Xf = fΛ =
∂f

∂q

∂

∂p
− ∂f

∂p

∂

∂q
.

The Hilbert space associated with Γ is introduced by a set of complex functions,

ψ(q, p), which are square integrable in C∞(Γ), i.e.
∫

dp dq ψ†(q, p)ψ(q, p) <∞ .

Then, the functions may be defined as ψ(q, p) = 〈q, p|ψ〉, with
∫

dp dq|q, p〉〈q, p| = 1

and

〈ψ|φ〉 =
∫

dp dq ψ†(q, p)φ(q, p) ,
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where 〈ψ| is a dual vector of |ψ〉. This Hilbert space, denoted by H(Γ), is used here

as the carrier space for representation of Lie algebras. The set of vectors |q, p〉 is a
basis in H(Γ), such that 〈q, p|q′, p′〉 = δ(q − q′)δ(p− p′).

Consider ℓ = {ai, i = 1, 2, 3, . . .} a Lie algebra over the (real) field R, of a Lie

group G, characterized by the algebraic relations (ai, aj) = Cijkak, where Cijk ∈
R are the structure constants and ( , ) is the Lie product. We construct unitary

symplectic representations for ℓ, denoted by ℓSp, using the star-product, as given

in Eq. (1). The associative product in H(Γ) is introduced from Λ, Eq. (2), as a

mapping eiaΛ = ⋆ : Γ× Γ → Γ, defined by

(f ⋆ g)(q, p) = f(q, p)eiaΛg(q, p)

= exp
[

ia(∂q∂p′ − ∂p∂q′)
]

f(q, p)g(q′, p′)
∣

∣

q′,p′=q,p
, (3)

where f and g are functions in C∞(Γ) and ∂x = ∂/∂x (x = p, q). The constant a

fixes units. The usual associative product is obtained by taking a = 0. In addition,

to each function, say f(q, p), we introduce an operator in the form f̂ = f(q, p)⋆.

Such an operator will be used as the generator of unitary transformations.

In order to consider the nonrelativistic quantum mechanics in phase space, we

study representations of the Galilei group in H(Γ). This procedure leads us to the

Schrödinger equation in phase space, in a close connection with the Wigner function

formalism. Following the standard procedure,54,55 we construct a unitary represen-

tation for the Galilei Lie algebra that is given by following set of commutation

relations:

[L̂i, L̂j] = i~ǫijkL̂k , [L̂i, K̂j ] = i~ǫijkK̂k ,

[L̂i, P̂j ] = i~ǫijkP̂k , [K̂i, P̂j ] = i~mδij1 , [K̂i, Ĥ] = i~P̂i ,

with all other relations being null. This is the Lie algebra for the Galilean sym-

metry with a central extension characterized by m. The various operators defining

the Galilei symmetry P̂ , K̂, L̂ and Ĥ are then generators of translations, boost,

rotations and time translations, respectively. We represent these operators by using

star-operators in the form f̂ = f(q, p)⋆. Then, we consider the Hermitian operators

Q̂ = q⋆ = q +
i~

2
∂p , (4)

P̂ = p⋆ = p− i~

2
∂q , (5)

such that

K̂ = mQ̂i − tP̂i , (6)

L̂i = ǫijkQ̂jP̂k = ǫijkqjpk −
i~

2
ǫijkqj

∂

∂pk
+
i~

2
ǫijkpk

∂

∂qj
+

~
2

4

∂2

∂qj∂pk
(7)
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and

Ĥ =
P̂ 2

2m
=

1

2m

(

P̂ 2
1 + P̂ 2

2 + P̂ 2
3

)

=
1

2m

[(

p1 −
i~

2

∂

∂q1

)2

+

(

p2 −
i~

2

∂

∂q2

)2

+

(

p3 −
i~

2

∂

∂q3

)2]

. (8)

The physical content of this representation is derived by observing that Q̂ and

P̂ are transformed by the boost as

exp

(

−iv · K̂
~

)

P̂j exp

(

iv · K̂
~

)

= P̂j +mvj1 , (9)

exp

(

−iv · K̂
~

)

Q̂j exp

(

iv · K̂
~

)

= Q̂j + vjt1 . (10)

Furthermore, we have [Q̂i, P̂j ] = i~δij1. Then, Q̂ and P̂ can be taken to be the

physical observables of position and momentum, respectively. The Galilei boost

transforms them according to Eqs. (9) and (10). To be consistent, generators L̂ are

interpreted as the angular momentum operator and Ĥ is taken as the Hamiltonian

operator. The Casimir invariants of the Lie algebra are given by I1 = Ĥ − P̂ 2

2m

and I2 = L̂ − 1
m
K̂ × P̂ , where I1 describes the Hamiltonian of a free particle

and I2 is associated with the spin degrees of freedom. First, we study the scalar

representation; i.e. spin 0.

It would be noted that we have, as usual, other operators in the Hilbert space

H(Γ) but without the physical content of observables. This is the case of the c-

number operators Q̄ = q1 and P̄ = p1. Indeed, under the boost, Q̄ and P̄ trans-

form as,

exp

(

−iv K̂
~

)

2Q̄ exp

(

iv
K̂

~

)

= 2Q̄+ vt1

and

exp

(

−iv K̂
~

)

2P̄ exp

(

iv
K̂

~

)

= 2P̄ +mv1 .

This shows that Q̄ and P̄ transform as position and momentum variables, respec-

tively. In addition, these operators satisfy [Q̄, P̄ ] = 0. Then Q̄ and P̄ cannot be

interpreted as observables. Nevertheless, they can be used to construct a frame in

Hilbert space with the content of phase space. Then, we use the orthogonal basis

in H(Γ), given by the vectors |q, p〉, such that Q̄|q, p〉 = q|q, p〉 and P̄ |q, p〉 = p|q, p〉.
It is worth noting that the wave function ψ(q, p, t) = 〈q, p|ψ(t)〉 is associated with

the state of the system, but its time evolution and physical content remain to be

specified.

1350013-5

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
3.

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
D

A
D

E
 F

E
D

E
R

A
L

 D
A

 B
A

H
IA

 o
n 

12
/1

7/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



February 28, 2013 8:51 WSPC/Guidelines-IJMPA S0217751X13500139

R. G. G. Amorim et al.

In this sense, ψ(q, p) is a wave function but not with content of the usual quan-

tum mechanics state, for q and p are eigenvalues of the operators Q̄ and P̄ which

are ancillary variables (not observables).

The time evolution equation for ψ(q, p, t) is derived by using the generator of

time translations, such that

ψ(t) = e
−iĤt

~ ψ(0) . (11)

This leads to

i~∂tψ(q, p; t) = Ĥ(q, p)ψ(q, p; t) ,

where Ĥ(q, p) = H(q, p)⋆. This is the Schrödinger equation represented in phase

space.47

The average of a physical observable Â(q, p) = a(q, p; t)⋆, in the state ψ(q, p) is

given by

〈A〉 =
∫

dq dpψ†(q, p)Â(q, p)ψ(q, p)

=

∫

dq dp a(q, p)[ψ(q, p) ⋆ ψ†(q, p)] . (12)

The association of ψ(q, p, t) with the Wigner function is,47

fW (q, p) = ψ(q, p, t) ⋆ ψ†(q, p, t) . (13)

Indeed, this function satisfies the Liouville–von Neumann equation,47 and the prob-

ability density in configuration space is

ρ(q) =

∫

dp[ψ(q, p) ⋆ ψ†(q, p)] =

∫

dpψ(q, p)ψ†(q, p) , (14)

while, in momentum space, it is

ρ(p) =

∫

dq[ψ(q, p) ⋆ ψ†(q, p)] =

∫

dq ψ(q, p)ψ†(q, p) . (15)

It is important to emphasize that the average of an observable is consistent with

the Wigner formalism, i.e. from Eqs. (12) and (13), we have

〈A〉 =
∫

dq dp a(q, p)fW (q, p; t) .

This provides a complete set of physical rules to interpret representations and opens

the way to study other improvements. For instance, considering a system in an

external magnetic field, a gauge transformation is introduced by following the usual

procedure: P̂ → P̂ + ieA(q). Another aspect of interest is that the phase space

description of quantum mechanics is fully presented in a self consistent way in

terms of representations. This is not the case of usual procedures, where we first

solve the Schrödinger equation in order to proceed further with the construction of

the Wigner function changing the representation in an intricate way.
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3. Pauli Schrödinger Equation in Phase Space

Next, we consider the spin 1/2 representation. In this case, H(Γ) has to be a spino-

rial Hilbert space. This leads to the following Pauli–Schrödinger equation in phase

space, describing an electron in a magnetic field, i.e.

i~∂tψ(q, p; t) = H(q, p) ⋆ ψ(q, p; t) ,

where ψ(q, p; t) is a two-dimensional spinor in phase space

ψ(q, p; t) =

(

φ(q, p; t)

ξ(q, p; t)

)

and

H(q, p)⋆ =
1

2m
(P̂ + ieÂ)2 + µBL̂ · σ ,

with L̂ being given by Eq. (7) and σ = (σ1, σ2, σ3) are Pauli matrices. The exter-

nal field Â is such that Â = A(q)⋆. In the next section, we use this formalism

and the gauge transformation to develop a symplectic representation for (spatial)

noncommutative theories, addressing the Landau problem in phase space.

4. Landau Problem in Phase Space

The Landau problem56,57 refers to a study of the behavior of an electron moving

in a uniform external magnetic field, orthogonal to the plane containing the elec-

tron. The description can be considered as a system with a noncommuting spatial

coordinates. The objective is to determine the Wigner function for the electron,

following the symplectic approach, to compare it with standard procedures.52

The Hamiltonian with noncommutative position coordinates may be introduced

by using the star product defined by

⋆θ = exp
iθ

2

(

←−

∂x
−→

∂y −
←−

∂y
−→

∂x

)

.

Then, we take space coordinates to obey the Moyal brackets,

[x, y]θ = x ⋆θ y − y ⋆θ x = iθ ,

where θ is a constant parameter.

The quantization of the system is considered by usual commutation relations,

[qi, pj] = i~δij ,

where q = (qi) = (x, y) and p = (pi) = (px, py). The derivatives in q are the

momentum operator, p = −i~∂q.
The noncommutative Hamiltonian52 is written as

H =
1

2

[(

(1 + k)px − B

2
y

)2

+

(

(1 + k)py −
B

2
x

)2]

, (16)
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where B is the intensity of the magnetic field. In this problem, we have θ given

by: θ = θ12, where θij = 2εij/B with εij being the antisymmetric tensor, and

k = θB/4 = 1/2.

Then, the stationary Schrödinger equation in phase space for the Landau prob-

lem is

1

2

[(

(1 + k)px − B

2
y

)2

+

(

(1 + k)py −
B

2
x

)2]

⋆ ψ(q, p) = Eψ(q, p) . (17)

This equation is solved with an algebraic approach, using the star-operators.

Let us define,

â = a⋆ =
1

√

2B(1 + k)

[(

px ⋆−
B

2
y ⋆

)

− i

(

py ⋆+
B

2
x ⋆

)]

(18)

and

â† = a†⋆ =
1

√

2B(1 + k)

[(

px ⋆−
B

2
y ⋆

)

+ i

(

py ⋆+
B

2
x ⋆

)]

, (19)

such that [a⋆, a†⋆] = 1. Then, a⋆ and a†⋆ are the annihilation and creation opera-

tors, respectively, in a basis defined in phase space. In addition,

[H⋆, a ⋆ a†⋆] = [H⋆, a† ⋆ a⋆] = 0 .

Then, Eq. (17) is written as

(1 + k)B

(

a† ⋆ a ⋆+
1

2

)

ψ(q, p) = Eψ(q, p) . (20)

The eigenvalues of H⋆ are derived by using,

a† ⋆ a ⋆ ψn(q, p) = nψn(q, p) .

Then,

En = (1 + k)B

(

n+
1

2

)

.

For the ground state ψ0, such that a ⋆ ψ0 = 0, we have

(1 + k)(px + py)ψ0(q, p)

=

[

B

2
(x + y)− 1

2
(1 + k)(∂x + ∂y) +

B

4
(∂px

+ ∂py
)ψ0(q, p)

]

. (21)

A solution for this equation is

ψ0(q, p) = N0e
−1

B(1+k)

[

((1+k)px−
B
2 y)

2
+((1+k)py+

B
2 x)

2
]

= N0e
−2H

B(1+k) ,

where N0 is a normalization constant. Using
∫

dq dpψ†
0 ⋆ ψ0 = 1, we have

ψ0(q, p) =

√

e

π
e
−2H

(1+k)B .
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From the ground state, we obtain ψn(q, p) by

ψn(q, p) =
1√
n!
(a†⋆)nψ0 ,

that results in

ψn(q, p) ∼
[(

(1 + k)px − B

2
y

)2

− i

(

(1 + k)py +
B

2
x

)2]n

e
−2h

(1+k)B .

We derive the Wigner function associated with each ψn(q, p) by using

Eq. (13), i.e.

fn
W (q, p) ∼ (a†)n ⋆ e

−2H
(1+k)B ⋆ an .

In particular, for n = 1, 2, we find

f
(1)
W (q, p) ∼

[

1− 4H

(1 + k)B

]

e
−2H

(1+k)B ,

f
(2)
W (q, p) ∼

[

1− 4
4H

(1 + k)B
+

(

4H

(1 + k)B

)2]

e
−2H

(1+k)B .

For an arbitrary n, we have

f
(n)
W (q, p) ∼ Ln

(

4H

(1 + k)B

)

e
−2H

(1+k)B , (22)

where Ln(x) are the Laguerre polynomials. This result for the Landau problem in

phase space is the same as the one derived by Dayi and Kelleyane,52 following a

different method.

In Eq. (22), we realize that the Wigner function corresponding to the Landau

problem depends on the parameter θ, since k = θB
4 . However, from a theoretical

point of view, one of the main problems in noncommutative models is the deter-

mination of the parameter θ. In most models, this parameter is arbitrary. A question

of great relevance to the acceptance of noncommutative models as candidates for

the description of physical phenomena is how the parameter θ may be related to

the observable physical quantities.58–60

5. Concluding Remarks

In this work, we have developed symplectic representations of the Galilei group,

that give rise to quantum theories in phase space. The Schrödinger and Pauli–

Schrödinger equations are derived, describing particles of spin 0 and spin 1/2,

respectively. As an application, we have considered the Landau problem in phase

space, and the Wigner function has been derived. The symplectic representations

are constructed by using the notion of the star-product, as a noncommutative geo-

metrical ingredient. Then, a Hilbert space is defined from a manifold with charac-

teristics of phase space. The states are represented by wave functions, that are

interpreted as quasi-probability amplitudes. This aspect gives rise to a connection
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with the Wigner function. We have recovered solutions in the form of the Wigner

function, derived by following the standard method based on the density matrix.

Here, however, we have found other solutions. Indeed, it is important to emphasize

that those new solutions are linear superposition of the quasi-amplitudes of prob-

abilities. In addition, the analysis of the Landau problem, as a noncommutative

formalism, shows a method to study noncommutative theories in phase space.

As a final observation, it is worth noting that the group theoretical approach

gives us strict directions to develop the phase space method based on unitary rep-

resentations with a physically consistent interpretation. This is true for the kine-

matical symmetry as the Galilei and Poincaré group, and provides a direct way

to derive the Wigner function for gauge theories, as it was shown here with the

derivation of the Pauli–Schrödinger in phase space. The complete analysis of gauge

theory in phase space will be presented in another place.
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