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Transfer matrix approach to the disordered Ising model on hierarchical lattices

Danielle O. C. Santos, Edvaldo Nogueira, Jr., and Roberto F. S. Andrade
Instituto de Fisica, Universidade Federal da Bahia, CEP 40210-210 Salvador, Bahia, Brazil
(Received 13 December 2005; revised manuscript received 25 March 2006; published 4 May 2006)

A disordered short-range Ising model on the diamond hierarchical lattice, where the magnetic coupling
constants J;;= =1 occur with probabilities p and 1-p, is investigated within a transfer-matrix based framework.
Results are obtained after the evaluation of a large number of independent samples, where each individual
coupling constant is randomly chosen according to the given probability distribution. The iteration of an exact
set of discrete maps leads to the values of thermodynamic functions until a large but finite generation. An
approximate scheme is developed to extend the results for each individual sample to the thermodynamic limit.
Thermodynamic functions are evaluated and the (7', p) phase diagram is obtained on the basis of the behavior
of the correlation length. The critical value py for the emergence of magnetic ordering is found to lie on the
Nishimori line, and a small reentrant effect is observed. The exponent v is evaluated for several values of p.

Exact log-periodic oscillations, found when p=1, vanish rapidly as p decreases.
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I. INTRODUCTION

The investigation of disordered magnetic systems relies
heavily on the use of numerical simulations to obtain quan-
titative information on their thermodynamic behavior.!> At
the same time, the rather rare analytical results are mostly
quite applicable, as they set up useful guidelines to a large
number of new questions and problems that correspond to
some specific physical situations. This is the case, for in-
stance, with Nishimori’s contribution to the investigation of
random Ising systems on Euclidean lattices where the
nearest-neighbor coupling constants J;; are described by the
following probability distribution:

P(Jij= 1)=p,

P(Jij=_1)=1_p- (1)

Nishimori’s findings are related to the existence of a con-
tinuous analytical line, the so-called Nishimori line (NL),
expressed by

exp(2J/T) = 1’%}) )

in the (p,T) diagram, where several thermodynamic proper-
ties of the model, including the internal energy, can be ana-
lytically evaluated.*> This result has been extended by a con-
jecture on the form of the (p,T) diagram for T<Ty, where
(py»Ty) represents the point defined by the intersection of
the ferromagnetic-paramagnetic border T,=T,.(p) with the
Nishimori line. According to this conjecture, the boundary
between the two phases for 7<<T) consists of a perpendicu-
lar line dropping vertically from (py, Ty) to (py,0).° This has
given rise to a large number of works that seek to establish
both the validity of this conjecture’® as well as whether the
behavior of similar systems on non-Euclidian lattices is also
described by the NL.?

In the two-bidimensional case, all numerical evidence
available so far suggests that the critical point (py,Ty) is
located on the Nishimori line. Regarding the confinement of
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magnetic ordering to the low-temperature region 7<<7y and
p>py, several authors have pointed out the presence of a
reentrance of the ferromagnetic phase in the (p,T) diagram,
with a nonordering region when p>py and T—0.'0 Al-
though it is well established that the lower critical dimension
(dyow) for the presence of a spin-glass (SG) phase in a disor-
dered Ising system defined by a symmetric distribution is
bounded to the interval 2 <d,,, <3,!"'? Nishimori’s result
brought renewed interest to understand the behavior of two-
dimensional models with nonsymmetric distributions.'3

In this work, we use a transfer matrix method to investi-
gate the properties of a disordered Ising system with a prob-
ability distribution of ferro- and antiferromagnetic interac-
tion defined by Eq. (1) on a diamond hierarchical lattice
(DHL), for which the graph fractal dimensions d;=2."%13
Also, we explore the dependence of the critical exponent v
with p, so that it is possible to compare our results with those
obtained in recent works.'® This and similar models, defined
on several distinct Euclidean and hierarchical lattices, have
been investigated in a series of works, where different tech-
niques have been used, e.g., Monte Carlo methods,!”~!”
transfer matrix (TM),'®?® and real-space renormalization
group (RG).21-2*

Working within the RG framework, Nobre? addressed the
question of the form of the (p,T) diagram for a particular
autodual hierarchical lattice with the same value d,=2. His
results, based on analysis for both zero and finite tempera-
ture, indicate the presence of a very slight reentrance, i.e., the
ferromagnetic border drops from (py,Ty) to (p.,0), with p,
> py- It is well known that hierarchical lattices with the same
fractal dimension may lead to different critical properties, so
that it is worthwhile to explore the behavior for other lattices,
e.g., those where autoduality is not present. This becomes
more relevant for the present problem due to the very small
size of the reentrant region. Our results for finite tempera-
tures below Ty suggest the presence of a very small reen-
trance.

The rest of this paper is organized as follows. In Sec. II,
we present the model and discuss the major features of the
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FIG. 1. First three steps of construction of a disordered model
on a DHL. The constants J; are randomly chosen according to the
PDF (1).

method used. Section III is divided into subsections. In the
first one we discuss the behavior of some thermodynamic
functions and the form of the (p,T) phase diagram. In the
latter, we present results for v as a function of p, and we
illustrate the rapid vanishing, for p <1, of the log-periodic
oscillations that are observed close to the para-ferromagnetic
boundary when p=1. Section IV contains further remarks
and conclusions.

II. MODEL AND METHODS

In this work we make use of a TM method that has been
developed to investigate the properties of short-range peri-
odic and aperiodic Ising models on DHL’s.?’ This approach
has been recently adapted, with success, to the analysis of a
fully disordered spin-glass model with symmetric distribu-
tions of ferro- and antiferromagnetic bonds.'® It amounts to
direct evaluation of the thermodynamic properties for par-
ticular realizations of the model. The critical properties fol-
low from the characterization of the singular behavior of the
thermodynamical functions, particularly of the correlation
length, averaged over a large number of samples.

The same strategy can be adopted at once to explore the
asymmetric distribution probability of coupling constants
given by Eq. (1). Its basic steps amount to starting with a
formal Hamiltonian,

H=—Ejij0'i0'_;" (3)
(i)

where o;==+1 are Ising variables and the sum is carried over
pairs of nearest neighbors on the DHL. The model is built
with the lattice altogether, by replacing each bond of the
previous generation G by a set of two parallel branches, each
with one inner site. If one starts with a single bond connect-
ing the two root sites, this procedure gives rise to a self-
similar graph, with fractal dimension dy=2, and a nearest-
neighbor spin model mediated by coupling constants {J,-j}.
The first steps of this procedure are illustrated in Fig. 1,
where we explicitly indicate that the coupling constants J; ;
are individually indicated, and do not follow any correlation
to those placed between other pairs of spins. Note that, in
Fig. 1, we have used a short-hand notation J; for the bonds
Ji;, in order to avoid numbering the sites. For each realiza-
tion, individual values for {J;;} are randomly assigned ac-
cording to the probability distribution (1).
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To obtain the thermodynamic properties of this model, the
partition function for any DHL generation G is written in
terms of a 2 X2 TM Ug. This is accomplished by performing
partial traces over all spins that are placed between the two
root sites, ry and r,. As the lattice is self-similar, partial trace
at generation G+1 is expressed in terms of four independent
partial traces of generation G. This can be formally put in
terms of expressions that relate the eigenvalues 7 and € of
two subsequent generations: 7g,1=%g.1(7,€5) and €gy;
=€g.1(76, €5). To get rid of possible numerical overflows, it
is most convenient to introduce a variable transformation,
and define the free energy f; and correlation length &; by

fe==Ng' T 7, (4)
__Ms;
bo= In( 77G/EG)’ ©)

where N;=2(2+4%)/3 is the number of spins at generation
G and M ;=20 is the distance between the two root sites.
Then it is possible to rewrite the maps for 7; and €; as

Jor1=fee1(fe) and &.1=EG.1(f. &) Such maps are explic-

itly written in Ref. 16, and we do not include them here for
the sake of brevity. The only difference between the current
implementation with respect to the previous one refers to the
form of the probability distribution P, which is now given by
Eq. (1).

This set of maps leads to the free energy and correlation
length as functions of T and the set J;; for successive values
of G. If we let G— o, these numerical values approach ac-
tual values in the thermodynamic limit. If we deal with ho-
mogeneous or deterministic aperiodic models, some 40-80
iterations are necessary to obtain f(G) with a numerical pre-
cision of 107!, The precise number depends on how close to
T, is the value of 7. We also observe that f converges much
faster than &. For any of the investigated situations, this rep-
resents no big challenge to usual desktop computers, as CPU
time increases linearly with G.

In the disordered case, however, as we have to indepen-
dently choose the coupling constants J;;, the CPU time in-
creases exponentially, and this constitutes severe burdens to
the approach to the thermodynamic limit, especially when
we focus on the behavior of & and explore the region close to
T.. Then, besides the increased number of required iterations,
we have to deal with strong fluctuations observed in the be-
havior of each individual sample with respect to sample av-
erage. In order to better appreciate the difficulties that are
involved in the evaluation, a sample of 400 realizations for
fixed G=10 (where each sample contains ~10° randomly
chosen coupling constants) and a single value of T requires
some 10 min CPU time in an ordinary desktop computer
with a 2.4 GHz clock. This is enough to warrant a free en-
ergy relative dispersion of 1072, relatively independent of the
value of 7. However, dispersion in ¢ remains at the same
order of magnitude as £ itself, requiring a much larger value
of G (~30) to reduce the fluctuations. As the CPU time
increases with 49, it seems to be hopeless, with the help of
any available device to date, to obtain meaningful numerical
results from the exact iteration of the maps.
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To sidestep this difficulty, we use again an approximate
scheme, developed in Ref. 16. There we proceeded within an
actual random choice of all coupling constants up to a given
value Gy, and stored a large number of samples Ny in a data
bank. After this preliminary phase, we carried out iterations
for larger values of G, in which we first built new Npg
samples at generation Gy, + 1, each one of them being formed
by randomly choosing four samples of the data bank Gy,.
This scheme, which is repeated over and over while G,
<G=G,, amounts to a linear dependence of the CPU time
with G, since no actually independent sample is constructed
from the very beginning.

The idea of approaching the thermodynamic limit by
working with a large set of finite-size samples is inspired in
other approaches to spin glass systems, such as the renormal-
ization group in hierarchical structures.'>?!?* There, banks
of finite samples are successively generated from higher-
order ones, and the critical point is obtained by the limit
form of the probability distribution function as the number of
decimation procedures is increased. The TM method used
herein, when tested in the spin glass model,'® gave rise to
reliable results both for the value of the critical temperatures
and critical exponents.

Of course samples for G>G,, start developing correla-
tion, since the building blocks are always the Ny samples at
G=G,,. Despite this, the approximate scheme proved to be
quite reliable, leading to results that are similar to those ob-
tained by other approximative approaches.

III. RESULTS
A. Thermodynamic properties and phase diagram

Results obtained by the iteration of the maps for f; and &;
can be displayed by average values ((-)) of these quantities
(or their derivatives), taken over a large number of indepen-
dent samples, as a function of 7, for fixed p. As we have
discussed in the previous section, results for f; = present
good convergence already when we consider actual random
systems up to G,,=10. From each fGM it is possible to obtain
also the entropy and specific heat ¢, as shown in Figs. 2(a)
and 2(b), where we draw the corresponding curves for p
=0.95 and 0.97. Results for £ can also be obtained but, in the
region close to the critical temperature, or even for the pur-
pose of its better evaluation, the maps should be iterated for
values of G > G, according to the scheme discussed before.
This is also illustrated in Fig. 2(c), where we also draw <§GM>
and (§; ), where G..=60. The superposition of the curves
indicates a matching of the numerical divergence of ({5 )
with the cusp of (c) at T,, while (§; ) remains finite in a
region of T<T..

The behavior of the entropy with respect to the tempera-
ture is very smooth, and gives no hint of the possible exis-
tence of a critical point. Also, we notice the absence of re-
sidual entropy, as observed for the symmetric distribution
(p=0.5).1° Clearer evidence of critical behavior is provided
by the presence of a cusp in the specific heat. However, Fig.
2(b) shows that, for smaller values of p, where the ferromag-
netic ordering at low temperature becomes less defined by
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FIG. 2. Plots for (s), {c), and (&), for p=0.95 (squares) and 0.97
(circles). The largest value G,,=60. In (a) and (b), results for G,
=10 and G..=60 overlap for the used axis scale, and error bars are
smaller than the height of the symbol height. In (c), results for G,
(solid) and G., (hollow) become quite distinct as T— T...

increasing bond disorder, the cusp of the specific heat be-
comes less and less pronounced. So, the identification of 7.
by the cusp position becomes unreliable. This is an expected
phenomenon, as it is well known that transitions of disor-
dered systems are not characterized by a critical behavior of
c. Thus, when p decreases, we are forced to use the diver-
gence of ¢ to identify the value of 7. For values of p
=0.97, the dispersion from average values is very small,
even ¢ in the region close to 7. For the region of smaller p
values, the dispersion of § increases when we approach 7. In
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FIG. 3. (p,T) phase diagram showing the boundary (circles and
dashes) between the paramagnetic (P) and ferromagnetic (F) re-
gions. Its intersection with the Nishimori line (solid) defines within
1072 numerical accuracy the point (py,Ty). The inset shows, for
T<Ty, a small reentrant region.

this region, it is possible to have numerical divergence of &
for some samples, while for other samples, & remains finite,
albeit large. We locate T, by a simple criterion, taking into
account the number of diverging samples: the paramagnetic
phase persists until AV, (T)<N,/2, where N, and N indi-
cate, respectively, the number of diverging samples and the
total number of samples in our investigation. For most of our
investigation we have used N;=400.

The results for all values of p and T can be summarized in
the diagram shown in Fig. 3. Phase transition from a para-
magnetic state into an ordered phase is observed only for p
=py=0.9200, when T,.(py)=Ty=0.829. We observe that
this (Nishimori) point is located, within numerical precision,
on Nishimori’s line, which is also drawn in the graph.

As discussed before, the left border of the ordered region
has been subject of a lengthy investigation, aiming to decide
whether it falls down vertically from (py,Ty) to (py,0) or it
has a reentrant form so that, at 7=0, the ordered phase is
constrained to a region p > py. Our results, based on keeping
track of the number of ¢ diverging samples, do support the
existence of the reentrant region, as shown in the inset of
Fig. 3. Note that, as obtained by other authors, this reentrant
phenomenon is restricted to a very narrow p interval close to
py-2 It is important to stress that this region is subject to very
large fluctuation in the value of A/, Despite this, the pres-
ence of the reentrant region can be established with reliabil-
ity, as illustrated in Fig. 4.

There we draw =N, /N;—1/2 for p=0.9200 and N
=600, as function of 7, with increment A7=0.001. Points
corresponding to ferromagnetic ordering (6>0) are widely
intertwined with points where no ordering occurs (6<<0). To
smooth the largely scattered data, we proceeded a moving
window average (6),.s taken over five successive values of
T (broken line). Though still quite irregular, it is possible to
recognize a tendency toward having a region where (6).s
>0 in the central region of the T interval. Finally, we have
also evaluated a least-squares best fit with a fourth-degree
polynomial (6),,4 (solid curve). This curve shows very little
sensitivity if it is evaluated working with the raw 6 values or
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FIG. 4. Values of 6 as a function of 7, for p=0.92. The region
corresponds to a small neighborhood of NP. The dashed line indi-
cates (6)ws and the solid line the ()4 >0. The largest value of 6
defined T=0.829.

with (6),s values. This curves indicates a very narrow 6
>0 T interval [0.820,0.839] where a ferromagnetic ordering
is likely to occur. The largest value for # locates NP at Ty
=0.829.

For p=0.9199, the same procedure no longer indicates a
finite region where (6),4> 0, while for p=0.9201 this inter-
val is much larger than obtained for p=0.92, as we can ob-
serve from the inset of Fig. 3. This way we can locate within
10~* and 1072 precision, respectively, the values for p, and
Ty. We also note that, for p=0.92, we obtain the correspond-
ing value 7=0.819 from NL analytical expression (2). This
indicates that, to our numerical accuracy, the point (py,Ty)
of the DHL lies on NL.

Further, it is worth noting the asymmetric shape of the
curve (6, with respect to its maximum. It decreases more
rapidly for 7> 0.839 than for 7<<0.820, pointing to a sharper
definition of the para-ferromagnetic boundary at larger tem-
peratures. On the other hand, due to the very shallow reen-
trant region, points for p=0.92 and 7<0.82 do feel the in-
fluence of a ordered phase in their close neighborhood,
which can explain the slower decay of 6.

Finally, similar analyses, with the same increment in p
and 7, have confirmed a reentrant phase until p <0.9204 and
T>0.54. Our investigation has not been pushed to reach still
lower values of T because of the large values of the Boltz-
mann weights in this region. They bring to the numerical
evaluation of ¢ a large number of intrinsic algorithmic insta-
bilities leading to numerical overflows, which reduce the re-
liability of our results.

B. Critical behavior

The results of the thorough investigation of (£) as a func-
tion of p and T, which were used to obtain the phase dia-
gram, can also be explored to characterize the critical behav-
ior of the system in the neighborhood of the para-
ferromagnetic boundary. So, let us now discuss results for
the critical exponent v in dependence of p.
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FIG. 5. Dependence of v with respect to p.

First we recall that very precise values for 7, have been
obtained (within one part in 10°) for p=0.94. Then, in order
to evaluate v with the same degree of accuracy, we reevalu-
ated ¢ for several values 7;>T, so that logq T /logo T;
=6 remains constant (typically 6=0.05), and 1=(T.-T)/T,
€[1073,107"]. With these data, it is straightforward to set up
plots of ¢ as a function of the t=(T-T,)/T, and proceed with
the evaluation of v. The double logarithmic plots (not shown
here) have a very regular linear dependence in the interval
[1072,107'], even for p=0.94. For smaller values of ¢, strong
fluctuations are present, so that the resulting pattern is that of
a linear dependence (with roughly the same slope observed
for the interval [1072,107"], superimposed to large fluctua-
tions, the magnitude of which increase as ¢ and p decrease.

The results for v are shown in Fig. 5. We observe that,
starting at the known value v(p=1)=1.3382,2" it first de-
creases with p, goes through a minimum for p=0.99, and
then steadily increases as p decreases down to p=0.93. For
values of p within a neighborhood <0.01, the presence of
strong fluctuations, similar to those presented before, does
not allow us to obtain values of v with the same accuracy as
displayed in Fig. 5.

The analysis of ¢ close to the transition line also makes it
possible to follow how the presence of log-periodic oscilla-
tions evolves with p, as illustrated in Fig. 6. There we draw
d(log,y &)/d(log;o t) as a function of log,, ¢ for p=0.99 and
6=0.0125, so that the numerical derivatives become more
accurate. Log-periodic oscillations are typical for models
that have discrete scale invariance, such as the hierarchical
lattices.?’ For homogeneous or deterministically aperiodic
magnetic models, very precise sinusoidal oscillations super-
imposed to a constant horizontal line that corresponds to the
value v are easily obtained. They contrast to the pattern
shown in Fig. 6, where the quasirandom distribution of
points over a straight horizontal line represents a dramatic
change with respect to the quoted results.

Once the emergence of log-periodic oscillations is directly
related to discrete scale invariance, we did expect that this
behavior should disappear as p decreases. However it is quite
amazing to see that, at a still large distance from the Nishi-
mori point, they are almost completely washed out.
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FIG. 6. Evidence of the rapid vanishing of log-periodic oscilla-
tions when p=0.99 deviates only slightly from p=1, where a well-
formed sinusoidal pattern is found.

IV. CONCLUSIONS

The results presented in this work have contributed to the
understanding of the physical features of slightly perturbed
magnetic systems. Working with the most simple diamond
hierarchical lattice and a method based on the iteration of
maps deduced from TM formalism, we constructed a phase
diagram in the p X T plane, identifying the presence of fer-
romagnetic and paramagnetic regions. The Nishimori line
plays an important role, as it accommodates the Nishimori
point (py,Ty), which sets lower bounds for the values of p
where ferromagnetic ordering can be observed. We have re-
ported a very small reentrant boundary of the paramagnetic
phase into the ferromagnetic one when 7<<Ty and p=py.
This behavior is in accordance with those reported in several
works on related models.”?

Further, we have explicitly shown that the critical behav-
ior depends strongly on the value of p, in accordance with
some recent results reported in the literature.”? Starting from
the previously reported value of the exponent v when p=1,
we first observed a slight decrease on its value when p de-
creases, which is followed by a steady increase until py. We
also investigated the effect of disorder on the emergence of
log-periodic oscillations, which are observed for homoge-
neous and aperiodic models on hierarchical lattices. Our re-
sults show a very rapid decrease of log-periodic oscillations
in dependence of p, indicating that, contrary to what occurs
with aperiodic models, this pattern is very sensitive to the
presence of random bonds. Finally, this second use of the
TM scheme, developed in a previous work to describe ther-
modynamic properties of random systems on hierarchical
structures, confirms its reliability and usefulness to treat
problems that fit into this class.
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