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The concept of thermoalgebra, a kind of representation for the Lie-symmetries developed
in connection with thermal quantum field theory, is extended to study unitary representations
of the Galilei group for thermal classical systems. One of the representations results in the
first-quantized Scho� nberg formalism for the classical statistical mechanics. Furthermore, the
close analogy between thermal classical mechanics and thermal quantum field theory is
analysed, and such an analogy is almost exact for harmonic oscillator systems. The other
unitary representation studied results in a field-operator version of the Scho� nberg approach.
As a consequence, in this case the counterpart of the thermofield dynamics (TFD) in classical
theory is identified as both the first and second-quantized form of the Liouville equation.
Non-unitary representations are also studied, being, in this case, the Lie product of the
thermoalgebra identified as the Poisson brackets. A representation of the thermal SU(1, 1) is
analysed, such that the tilde variables (introduced in TFD) are functions in a double phase
space. As a result the equations of motion for dissipative classical oscillators are derived.
� 1996 Academic Press, Inc.

I. INTRODUCTION

The main goal of this paper is to study representations of symmetry groups
associated with thermal classical systems [1]. To do this we utilize the basic
elements of the representation theory of Lie groups developed in the context of pure
state representation of the thermal quantum field theory.

In quantum field theory we can double the degrees of freedom of a system so that
a finite temperature mixed state can be represented by a pure state [2, 3]. The
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doubling process, called tilde conjugation rules, is related with an algebraic associa-
tion among the generators of Lie symmetries and dynamical observables through
the concept of thermoalgebra [4]. Moreover, the temperature effects arise via
vacuum correlations between the so called tilde and non-tilde variables. The explicit
formalism of such a theory is known as the thermofield dynamics (TFD) [5�8] and
has been fully developed in recent years. It can be used to treat both equilibrium
and non-equilibrium systems and has shown its advantages to other methods,
among which the convenient diagram recipes and the time dependent Bogoliubov
transformations are the most celebrated.

Nevertheless, an extension of the doubling process to classical systems cannot be
carried out in a straightforward manner. This is because two mutually non-inter-
acting systems can be related with each other through vacuum correlations in a
quantum model, while this is not the case for the classical theory. The counterpart
of TFD in classical mechanics is yet to be identified, and this is accomplished in this
paper through the analysis of representations of thermal Lie algebras.

The concept of thermoalgebra has been successfully used to analyse represen-
tations of thermal quantum systems described by the Galilei and Poincare�
invariance [4, 9]. Here we show that such an approach can be extended to thermal
classical theory as well. It means that, we can apply the techniques developed in
TFD to the study of thermal classical systems. In addition, the classical analogues
to some elements of the thermal field theories are specified. Such an achievement,
in particular, sheds some light on the true physical nature of certain elements of
TFD, which have not been fully interpreted and appreciated physically and are
brought forth by the introduction of the dual (or tilde) operators.

In order to study representations of Lie groups for thermal classical systems, first,
we search for unitary representations of thermal Lie algebras. In this case, the Lie
product of the thermoalgebra is the commutator, and the inner product in the
representation space is defined on a set of complex functions in the phase space.
Only in a particular case such functions are assumed to be of the type L2 (Lebesgue
integral). Second, a non-unitary representations for a classical system by using the
structure of the Poisson brackets as the Lie product of the thermoalgebra is
introduced.

Unitary representations of Lie algebras for classical systems have been studied in
the literature in different ways [10�17]. In particular, Loinger [11] has derived
unitary representations for the Galilei group associated with the Liouville equation,
starting from the structure of the adjoint representations of the usual classical
mechanics [18].

In contrast to the usual methods, however, we show that the thermoalgebraic
structure provides a form to analyse the Galilei group for classical systems without
relying on a particular unitary representation. That is, the role played by each
element of the thermoalgebra, as well as its commutation relations, is defined by
physical and algebraic aspects, without referring to the adjoint representation of the
classical mechanics. In this context, the phase space structure arises naturally,
and the Scho� nberg�Liouville wave equation is derived [19, 20]. Another unitary
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representation gives the Scho� nberg�Liouville equation in terms of field operators
defined on a Fock space of symmetrical and antisymmetrical wave functions of
classical particles [19, 21�23]. In both situations, it is clear that the basic elements
of the TFD can be used to describe classical systems; and consequently, the
counterpart of the TFD is identified as the Scho� berg formalism for the classical
statistical mechanics.

As a particular example, we concentrate on the structure of the classical harmonic
oscillator system, which can be mapped on to two sets of mutually commuting
oscillators. For such a model, the analogy with TFD is almost exact. The original
Hamiltonian, which commutes with the time evolution generator, can be mapped to the
Bogoliubov-transformation generators in TFD, which introduces temperature effects.
Thus the classical system exhibits some quantum-like elements at finite temperature.

In the case of non-unitary representations, the thermoalgebra of the SU(1, 1)
group is studied. Using a particular class of generators of time translations (a class
of hat-Hamiltonians), we derive the equations for dissipative classical harmonic
oscillators which were proposed by Feshbach and Tikochinsky [24], and recently
studied in connection with quantum optics and thermal field theories [25�27]. The
nature of tilde variables are, then, written explicitly as functions defined on a
double phase space.

The paper is organized in the following way. In Section 2 the basic elements
defining the concept of classical representations for a thermal Lie algebra are intro-
duced. In Section 3 the classical unitary representations for the thermal Galilei
group are studied resulting in the Scho� nberg approach. In Section 4 the
Scho� nberg�Liouville wave equation for the harmonic oscillator is discussed in con-
nection with the TFD formalism. The Fock space version for the classical unitary
representations is analysed in Section 5; the representations of SU(1, 1) group on
the double phase space are discussed in Section 6. Finally, in Section 7 some final
remarks and conclusions are presented.

II. REPRESENTATIONS OF THERMAL LIE ALGEBRAS
FOR CLASSICAL SYSTEMS

In thermal quantum field theory, the thermal Lie algebra concept is defined in
the following way. Let L=[Ai , | AihAj=CijkAk] be the Lie algebra associated
with the usual dynamical physical variables, where h denotes the Lie product, and
Cijk are the structure constants. We then associate this algebra with an isomorphic
hat-algebra denoted by L� =[A� i , | A� i hA� j=Cijk A� k], such that the thermoalgebra,
designated by LT , is defined by [4]

AihAj =CijkAk , (1)

AihA� j =CijkAk , (2)

A� ihA� j=CijkA� k . (3)
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In TFD, given the tilde operators A� that is isomorphic to the non-tilde operator A
through the doubling process, the hat operators may be identified as A� =A&A� . In
general, however, such an association should not be assumed. Instead, the search
for the hat operators should be our primary goal.

The main characteristics of LT are the following: (i) As a vector space, LT is
the direct sum of L and L� . (ii) L is an ideal of LT . (iii) From the dynamical
standpoint, the elements of the subalgebra L� are interpreted as dynamical gener-
ators of symmetries and the elements of L are the usual dynamical observables.
Both are called dynamical variables. In the Lie algebra approach, infinitesimal
transformations of dynamical variables are induced by the (Lie) product of the
generators. Then Eq. (2) dictates just how the dynamical generators act on the
dynamical variables infinitesimally. (iv) Eq. (1) defines the non-abelian nature of
the dynamical observables, related to the measurement processes.

The algebra LT can be derived from Eq. (1) in association with the concept of
tilde conjugation rules and the formalism of the Lie�Baxter algebras [4]. This way
of deriving the thermoalgebra LT , however, is not convenient if the observable
algebra is an abelian algebra, as it is the case when we search for unitary operators
for classical systems. Nevertheless, in such a situation we can still define the concept
of thermoalgebra for classical systems, since property (iv) can be weakened by
writing Eq. (1) as AihAj#[Ai , Aj]=0, where [A, B]=AB&BA, the commu-
tator, is the Lie product. Notice that in this case we still have the basic properties
(i)�(iii), but property (iv) should be generalized to include abelian observables.
Then we assume that a unitary thermoalgebra describing a classical system should
be given by

[Ai , Aj ]=0, (4)

[Ai , A� j ]=iCijkAk , (5)

[A� i , A� j ]=iCijkA� k . (6)

In this case, the hat operators are a faithful representation of the symmetry
operations.

On the other hand, one way to maintain the properties (i) to (iv) for abelian
observables is to define the Lie product of the thermoalgebra as the Poisson
brackets. In this case we can write

[Ai , Aj]=CijkAk , (7)

[Ai , A� j]=CijkAk , (8)

[A� i , A� j]=CijkA� k . (9)

(We are using the same notation for operators and c-number functions in the phase
space since it will not create any confusion.) Using the Lie�Baxter algebras as in the
quantum case [4], we can introduce the tilde variables in the phase space as

A� i=Ai&A� i . (10)
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Therefore, the tilde and non-tilde variables satisfy the following relations:

[Ai , A� j ]=0, (11)

[Ai , Aj ]=CijkAk , (12)

[A� i , A� j ]=&Cijk A� k . (13)

Representations of Lie groups through the Poisson brackets are, in general, pro-
jective representations. That is, given a symmetry group characterized by Ai hAj=
Cijk Ak , the realization in terms of Poisson brackets is given by

[Ai , Aj ]=CijkAk+dij ,

where dij are pure numbers [18]. In this situation, using the relations [Ai , Aj ]=
Cijk Ak+dij , [A� i , A� j ]=&CijkA� k&dij and the approach of Ref. [4], the ther-
moalgebra is modified to assume the following relations

[Ai , Aj ]=CijkAk+dij , (14)

[Ai , A� j ]=CijkAk+dij , (15)

[A� i , A� j ]=CijkA� k . (16)

Note that the hat-functions defining a subalgebra of the thermoalgebra is still a
faithful representation of the original Lie-symmetry.

The generators of symmetries acting on the dynamical variables are defined by
the following relation

A� (*)=e&*[D� ,]A� (*=0), (17)

where A� stands for the dynamical variables A, A� or A� (this notation will be used
throughout this paper); and, D� is a general generator defining a one parameter (*)
subgroup. In particular, if * is the time parameter, we can derive from Eq. (17) the
equation of motion

A�4 =[A� , H� ]. (18)

When A� =A, Eq. (18) reduces to A4 =[A, H], and the usual classical formalism is
obtained.

An explicit form for the Poisson bracket in Eq. (18) is

[A, B]= :
2

a=1
\ �A

�xa

�B
�pa

&
�A
�pa

�B
�xa+ , (19)
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where x1=q, x2=&q~ , p1=p and p2=p~ . Then we have a pair of Hamilton
equations:

x* a=[xa , H� ]=
�H�
�pa

, (20)

p* a=[ pa , H� ]=&
�H�
�xa

, (21)

where a=1, 2. These equations will be used in Section 6 in connection with the
SU(1, 1) group and dissipative systems.

III. CLASSICAL UNITARY REPRESENTATIONS FOR
THE THERMAL GALILEI GROUP

Following Eqs. (4)�(6), we write the thermal Galilei algebra (denoted by GT) for
a classical system as

[Ji , Jj ]=0, [J� i , J� j ]=i=ijk J� k ,

(22)

[Ji , Pj ]=0, [J� i , P� j ]=i=ijkP� k ,

[Ji , Kj]=0, [J� i , K� j ]=i=ijkK� k ,

[Ki , H]=0, [K� i , H� ]=iP� i ,

[Pi , Kj]=0, [P� i , K� j ]=0

[J� i , Jj ]=[Ji , J� j ]=i=ijkJk ,

[J� i , Pj ]=[Ji , P� j ]=i=ijk Pk ,

[J� i , Kj ]=[Ji , K� j ]=i=ijkKk ,

[K� i , H]=[Ki , H� ]=iPi ,

[P� i , Kj ]=[Pi , K� j ]=&iM$ij ,

(the other commutation relations are null), where =ijk is the Levi�Cevita tensor,
i, j, k=1, 2, 3, and the generators of the symmetries are P� for translations, J� for
rotations, K� for the Galilei boost and H� for the time translations. These operators
from a subalgebra of GT , called G� , which is manifestly a faithful representation of
the Galilei Group. Moreover, the G-algebra of the dynamical observables (non-hat
operators) is abelian.
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In Eq. (22), M� =0 whilst M is a constant operator, that is M=m1. In order
to define the Galilei transformation for a point mass, m is considered real and
different from zero. Thus let the operator of position (Q) be defined by

K=mQ&tP. (23)

Notice that this relation among K, P and Q is similar to that used in quantum
mechanics, but here Q and P commute with one another.

A representation where P and Q are diagonal is specified by: P | p, q)=
p | p, q) , Q | p, q)=q | p, q) , so that (q, p | %)=%( p, q) is a vector of the represen-
tation space, which is a Hilbert space, say H, on the phase space of the (q, p)-
points. Then, the other operators of GT can be written as

Ji=Li+Si , (24)

H=
P2

2m
+C1 , (25)

J� i=L� i+S� i , (26)

K� i=im
�

�Pi
+it

�
�Qi

, (27)

P� i=&i
�

�Qi
, (28)

H� =i
�
�t

, (29)

where

L� i=i=ijk \Qk
�

�Qj
+Pk

�
�Pj+ , (30)

Li==ijkQjPk , (31)

S� i are the spin operators (a representation of SO(3) such that S� commutes with
every operator defined on the space ( p, q)), and C1 is a Casimir invariant as
discussed later in this section.

The operators P and Q can be interpreted as the momentum and position
operators, since they satisfy the Galilei boost conditions, namely

(%| exp(&ivK� ) Q exp(ivK� ) |,)=(%| Q |,) +vt(% | ,) , (32)

and

(%| exp(&ivK� ) P exp(ivK� ) |,)=(%| P |,) +mv(% | ,) , (33)
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where |%) and |,) ( # H) are arbitrary states of the system. Besides, P� is the
generator for spatial translation, for [P� i , Qj ]=&i$ij . Then, L is the angular
momentum, and H is the Hamiltonian.

In the case when S� i=Si=0, GT has two non-null invariants, which have fixed
values within the irreducible representation, given by

C1=
P2

2m
&H, (34)

C2=
P�
m

P&H� . (35)

Following the case of the Galilean quantum mechanics [28, 29], the expectation
value of a dynamical variable A� in a state |%) is defined by

(A� ) =(%| A� |%). (36)

On the other hand, the temporal evolution of A� is given by

(%0 | exp(itH� ) A� exp((&itH� ) |%0)=(%0 | A� (t) |%0) . (37)

Therefore, we have defined a Heisenberg picture for the temporal evolution of the
dynamical variables, and from Eq. (37) we obtain

i�t A� =[A� , H� ]. (38)

Using Eq. (35), Eq. (38) is written as

i�t A� =_A� ,
P�
m

P& ,

which shows that the value of C2 does not play a special role in this case (as it can
be seen later, in fact C2=0).

In the Schro� dinger picture, we derive the following equation for the evolution of
the state

i�t |%(t))=H� |%(t)) , (39)

where H� is given by Eq. (35), and f (q, p; t)=|%(q, p; t)| 2 is defined as the distribu-
tion function in the phase space. Writing %(q, p)=�(t) ,(q, p), Eq. (39) gives rise
to the following eigenvalue equation

H� ,(q, p)=&,(q, p) and �(t)=�(0) e&i&t.

Notice that by the definition of the thermoalgebra, to every non-hat operator
(say A) there is a hat-operator (say A� ). This is a one-to-one mapping, which may
be determined using the explicit representation of the thermoalgebra given by
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Eqs. (23)�(29). Then, we can define the one-to-one hat-mapping, h: A � A� , such
that A� =i[A, ], where [ , ] is the Poisson brackets given by

A� =i[A, ]=i
�A
�q

�
�p

&i
�A
�p

�
�q

. (40)

We have, hence, the following correspondence for the Lie algebra elements:

P � P� =i[P, ], (41)

K � K� =i[K, ], (42)

L � L� =i[L, ], (43)

H � H� =i[H, ], (44)

M � M� =i[M, ]=0. (45)

As a consequence, the thermoalgebra reduces to a secondary Lie algebra, which
is a type of extension of the adjoint representation of a given (primary) Lie
algebra [16]. Therefore, H� is the classical Liouvillian operator and Eq. (39) is the
Scho� nberg�Liouville wave equation [19]. Indeed, we have derived the classical
mechanics since f (q, p)=|%(q, p)| 2 is a solution of Eq. (39), and the average given
by Eq. (36) reduces to the usual average in the phase space for the non-hat
operators, that is

(A)=(%| A |%)=| dp dq %(q, p) A(q, p) %(q, p)

=| dp dq f (q, p) A(q, p).

The hat-mapping (h) and the thermoalgebra defined by Eqs. (4)�(6) satisfy the
following properties (such properties are the classical counterpart of the quantum
case [4]):

P.1. h is a linear mapping: (A1+aA2) 7 =A� 1+aA� 2 .

P.2. h is a derivation: (>n
i=1 Ai )

7 =�n
i=1 (A1 } } } Ai&1 A� iAi+1 } } } An).

Proposition 1. Given C # G and [C, A]=0, for every A # G, then C and C� are
two Casimir invariants of GT .

Since we know the invariants of the Galilei group, considering Proposition 1, we
can write the Casimir invariants of GT in the general situation in which S{0. These
invariants are C1 and C2 , given by the Eq. (34) and (35), respectively, and

C3=(J&L)2, (46)

C4=[(J&L)2] 7 . (47)
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Both C4=C� 3 and C2=C� 1 have a fixed value in an irreducible representation. But
in accordance with the properties of the hat-mapping C2 and C4 are null constants.

With the properties P.1 and P.2, and the Proposition 1, we can follow closely the
Loinger's work (which is based directly on the structure of the Poisson brackets)
[11] to conclude that when M=0 in Eq. (22), we cannot find a physical represen-
tation for GT .

Similar to the quantum TFD, we can introduce in this classical formalism an
arbitrary parameter : to be specified [8]. Indeed, the most general form of Eq. (36) is

(A� )=( f :| A� | f 1&:)

=| dp dq f :(q, p) A(q, p) f 1&:(q, p). (48)

Then, Eq. (36) is obtained when := 1
2. As is the case in TFD, however, there are

other possibilities for :. For instance, if :=0 and the basis of the states is such that
the operators P and P� are diagonal, we obtain the formalism called dynamics of
correlations [30, 31]. In fact, if P and P� are c-number operators, then P | p, k)=
p | p, k) , P� | p, k)=k | p, k) , so that ( p, k | f )=fk( p). As a consequence

fk( p)=| dp$ dq( p, k | p$, q) f ( p$, q)

=| dq eikp f (q, p). (49)

The fk( p)-functions are the correlation patterns in the dynamics of correlations
[30, 31].

Closing this section, let us write the average, Eq. (48), for the thermal equilibrium:

(A� ) =( f :| A� | f 1&:) =| dp dq e&:(;�2) HA� e(:&1)(;�2)H,

still a similar case to that in TFD.

IV. SCHO� NBERG�LIOUVILLE WAVE EQUATION
FOR THE OSCILLATOR SYSTEM

It is shown in the previous section that, similar to TFD, the dynamics of a system
is generated by hat operators, which are in correspondence with the original
dynamical variables via the Poisson brackets:

Quantum TFD Liouvillian Systems

A� =A&A� , A� =i[A, ]=i \�A
�q

�
�p

&
�A
�p

�
�q+ .
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This relationship between the classical operators and quantum operators is not
transparent. We would like to see if there are additional connections. In order to
do this, we shall first represent the p-variable in its Fourier representation, such that

p � i�q~ and �p � iq~ .

p̂=im�q does not change. In particular, the generator of rotations is given by

L� =i=ijk(qk�qj+pk�pj ) � i=ijk(qk�qj&q~ j�q~ k)=i=ijk(qk �qj+q~ k �q~ j ).

Assuming that H=T+V, we get

H� =&i( p�q&�q V�p) � (�q �q~ &�q Vq~ ).

For a harmonic oscillator, H� =&i( p�q&q�p) resembles the quantum angular
momentum operator Lz , which can be considered as Lz=a-a&a~ -a~ , where a and a~
are two independent annihilation operators. We will show in the following that this
is indeed the case.

Consider a rotation of the form

\q
q~ +=\ u

&v
v
u+\

X
X� + , \X

X� +=\u
v

&v
u +\q

q~ + ,

with u2=v2=1�2, p̂ � imu(�X+�X� ). For a system of harmonic oscillators we have

H� = 1
2 :

i

[&�2
X i

+X 2
i +�2

X� i
&X� 2

i ] (50)

=H(X )&H(X� ), (51)

which is remarkably similar to the one in the TFD formalism. A more general
system would then become

H� =:
i _&

1
2

(�2
X i

&�2
X� i

)+
1

- 2
(Xi&X� i ) Vi (X+X� )& , (52)

where Vi #�q i V. Even for such a general system the time generator for the distribu-
tion function is anti-tilde-invariant in the TFD sense.

To see more connections with TFD, consider the following transformation

a=
1

- 2
(X+�X), a-=

1

- 2
(X&�X).

The original Hamiltonian becomes

H= 1
2 [ p2+q2]= 1

2 [q2&�2
q~ ]= 1

4 [(X+X� )2&(�X&�X� )
2] (53)

=g1+g3 , (54)
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where g1 and g3 are two of the three generators defined in TFD as g1=aa~ +a-a~ -,
g2=i(aa~ &a~ -a-), and g3=a-a+a~ -a~ +1 [7, 8]. They commute with the time gener-
ator H� . If a state |0) satisfies the Scho� nberg�Liouville equation, so does e:H |0)
where : is an arbitrary c-number, since [H, H� ]=0. In fact, f (H) |0) (where f (H )
is an arbitrary function of H ) is also a valid solution in the classical case. Hence-
forth, we have the following correspondence between the Liouville system and
TFD:

Liouvillian System Thermofield Dynamics

H� =i[H, .] � H� =H&H� ,

H � G Transformation Generators,

|%) |0).

The last correspondence is the same for the quantum system as well.
Consider now that, the vacuum state of the quantum system is given by

�0=e&1�2(X2+X� 2)=e&1�2(x 2+y2)=| dp eipye&H(x, p)

where H(x, p)= 1
2(x2+p2). This solution corresponds to a classical system in thermal

equilibrium at ;=1. The obvious solutions of the classical Liouville equation are

e:H�0=| dp eipye&(1+:) 1�2(x2+p2). (55)

The following two generators

aa~ \a-a~ - � {q2+p2+�2
q+�2

p

q�q+p�p
,

however, do not generate any new class of solutions. The obvious solution is
obtained by the use of polar coordinates p=r cos %, q=r sin %, L� � �% . A time
invariant solution must be of form f (r2)=f ( p2+x2) that is independent of %.

In TFD, the canonical transformations are, as a matter of fact, a restricted class
of transformations. If we write [8]

e&G \ a
a~ -+ eG=\B11

B21

B12

B22+\
a
a~ -+ ,

then we have the constraint that B12B21=(0| a-a |0) be positive. A close examina-
tion reveals that the solution e:H�0 with real : is actually forbidden in the quantum
case. However there is no such constraint in the classical system. Therefore any
solution f (x2+p2) is a valid solution in the classical case.
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V. SCHO� NBERG�FOCK SPACE AND REPRESENTATIONS FOR
THE THERMAL GALILEI GROUP

In Section 2 the unitary representation for the thermal Galilei algebra, GT , has
been studied, where the representation space was the Hilbert space denoted by H.
In this Section, a unitary representation for GT is derived using the Fock space (F)
defined by the tensor product of H; that is

F=�
m

H}m, m=0, 1, 2, ... .

The elements of GT are assumed to be defined in F, which will be called
Scho� nberg�Fock space.

Let �(q, p) and �-(q, p) be the basic field operators satisfying the commutation
relations

[�(q, p), �-(q$, p$)]\=$(q&q$) $( p&p$),

[�(q, p), �(q$, p$)]\=[�-(q, p), �-(q$, p$)]\=0,

where &(+) in the brackets defines the classical bosons (fermions). For the sake
of simplicity, we use in this section the notation: {=( p, q); �({)=�(q, p);
$({)=$(q&q$) $( p&p$); we also assume that the particle spin is Si=0.

In the space F there is a state |0) , such that �({) |0) =0, (0 | 0) =1, and
�-({i) |0) =|/i) . A general vector in F is defined by

|/(t)) =%(t)0 |0) + :
�

i=1

1

- n! | %({1 , {2 , ..., {n ; t) |/n) d n{, (56)

where dn{=d{1 d{2 } } } d{n , |/n)=�-({1) �-({2) } } } �-({n) |0) , and %({1 , {2 , ..., {n ; t)
are symmetric or anti-symmetric functions of the Hilbert space H, such that

%({1 , {2 , ..., {n ; t)=
1

- n!
(/n | /)=

1

- n!
(0| `

n

i=1

�({i ) |/).

Besides

(/ | /$)=%0*%$0+ :
�

i=1
| %*({1 , {2 , ..., {n ; t) %$({1 , {2 , ..., {n ; t) dn{.

Therefore, for each operator A� ({1 , {2 , ..., {n) defined on H, and depending sym-
metrically on the variables {1 , {2 , ..., {n , we can introduce a correspondent operator
acting on F in the following way

A� =
1
n! | �-({1) �-({2) } } } �-({n) A� ({1 , {2 , ..., {n) �({n), ..., �({2) �({1) d n{. (57)
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A representation for the Galilei thermoalgebra is then obtained with such a kind
of operators when n=1. Then, using Eqs. (23�29) and n=1 in Eq. (57), the non-
null commutation relations for the thermal Galilei group are now given by

[J� i , J� j ]=i=ijkJ� k ,

[J� i , P� j ]=i=ijkP� k ,

[J� i , K� j ]=i=ijkK� k ,

[K� i , H� ]=iP� i ,

[J� i , Jj ]=[Ji , J� j ]=i=ijkJk ,

[J� i , Pj ]=[Ji , P� j ]=i=ijk Pk ,

[J� i , Kj ]=[Ji , K� j ]=i=ijkKk ,

[K� i , H]=[Ki , H� ]=iPi ,

[P� i , Kj ]=[Pi , K� j ]=&iNm$ij .

N, the number operator, is defined by

N=| N({) d{=| �-({) �({) d{, (58)

such that

N |/n)=n |/n) . (59)

Following the method given in Section 3, a dynamical variable A� has its average
in a state |/) defined by

(A� ) =(/| A� |/). (60)

On the other hand, the temporal evolution of A� is given by

(/0 | exp(itH� ) A� exp(-itH� ) |/0)=(/0 | A� (t) |/0) . (61)

Thus, we have defined a Heisenberg picture for the temporal evolution of the
dynamical variables, and from Eq. (61) we obtain

i�t A� =[A� , H� ]. (62)

In the Schro� dinger picture, the equation for the evolution of the state is

i�t |/(t))=H� |/(t)). (63)
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Using Eq. (63), we can show that

i�t %({1 , {2 , ..., {n ; t)=H� ({1 , {2 , ..., {n) %({1 , {2 , ..., {n ; t), (64)

where H� is the Liouvillian for n particles. To get a physically consistent interpreta-
tion of the theory we define f ({1 , {2 , ..., {n ; t)=|%({1 , {2 , ..., {n ; t)| 2 as the n-particle
distribution function in the phase space of ( p, q).

This second quantization formalism in the Fock space of symmetric or anti-sym-
metric classical states was first proposed by Scho� nberg [19]. However, we would
like to emphasize here that the structure of classical statistical mechanics, in par-
ticular the concept of phase space, Poisson bracket and Liouville equation for n
particles, has emerged naturally from the thermoalgebra structure; this aspect of
consistency is not present in the usual methods related to the Scho� nberg approach
[19�23].

VI. REPRESENTATIONS OF SU(1, 1) AND
THE THERMAL CLASSICAL OSCILLATOR

Consider the double phase space defined in Section 2, where the Poisson brackets
for the tilde-non-tilde variables are specified by Eq. (19). A realization of the
rotation group in this double phase space is defined by the relation

[Li , Lj ]==ijkLk , (65)

such that each component of L is a function of (xa , pb), a, b=1, 2. The Casimir
invariant is

C2=L1
2+L2

2+L3
2, (66)

and we suppose a system described by the following hat Hamiltonian (the
generator of time translation)

H� =NC+ML2 , (67)

where N and M are constants. Let us introduce the following set of variables L1=
(i�2)(L&+L+) and L2= 1

2 (L+&L&) (or L\=�(L2\iL1)). The algebra of L+,
L& and L3 is a representation of SU(1, 1) for

1
i

[L\ , L3]=�L\ , (68)

1
i

[L& , L+]=&2L3 . (69)
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In terms of L+ , L& and L3 , C is given by C2=L3
2&L+L&. Since we have an

algebra of SU(1, 1), we can define an algebra for oscillator-like operators. That is,
we define the variables a and b, such that

L+= 1
2 (a2&b2), (70)

L&= 1
2 (a*2&b*2), (71)

L3= 1
2 (aa*+bb*), (72)

where a*(b*) is the complex conjugate of a(b). Then the algebra for the variables
a, b and their complex conjugates is given by the relations [a, b]=0, [a, a*]=i,
and [b, b*]=i. The other relations are zero.

The basic variables xa , pa of the double phase space specified by Eq. (19) can be
introduced through a transformation defined by

a=\ 1
20+

1�2

( p1&i0x1), (73)

b=\ 1
20+

1�2

( p2&i0x2), (74)

and the constants: N=20, M=&i#, 02=k&(#�2m)2. Then, the Hamiltonian,
Eq. (67), is written as

H� =
1
2

p1p2+
1
2

02x1x2+
#
4

( p2 x2&p1x1). (75)

Using Eq. (75) and the Hamilton equations defined in section 2 by Eqs. (20) and
(21), we have the following equations

mx� 1+#x* 1+kx1=0, (76)

mx� 2&#x* 2+kx2=0. (77)

These two equations describe a system of two oscillators: one is the usual dis-
sipative harmonic oscillator, Eq. (76), and the other, Eq. (77), is a growing-
oscillator to which the energy of the dissipative oscillator flows. Such a classical
dissipative system with two degrees of freedom was analysed by Feshbach and
Tikochinsky [24], and has been recently studied in connection with quantum
optics and thermal field theories [25�27].

VII. CONCLUSIONS

In summary, the concept of thermal Lie algebra, which was originally developed
in connection with the thermal quantum field theory, has been extended to the
classical mechanics. Two types of representations for classical systems have been
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analyzed: (i) the unitary representations, where the representation space is a Hilbert
space; (ii) the non-unitary representation, where the Lie product of the thermo-
algebra is the Poisson brackets. In both cases the basic elements of the thermofield
dynamics (TFD) approach could be imported to the classical mechanics.

In the case of unitary representations, we have obtained the Liouville equation
and the Scho� nberg formalism for the classical statistical mechanics, which is the
quantized version of classical systems assuming symmetric or antisymmetric states.
Both, first-quantized and Fock-space version of the Liouville equation have been
analyzed. The connections with the TFD formalism have been established, par-
ticularly by studying the example of a harmonic oscillator. In this case, it has been
found that the classical harmonic oscillator is represented in a way almost identical
to the quantum system. It is worth noting the fact that in such unitary representa-
tions, due to the concept of thermoalgebra, the thermal state of the system is
defined as a pure (not mixed) state, in the sense that, it is is representated by vector
in a Hilbert space. Besides, the concept of phase space, Poisson brackets and wave
function in the phase space have emerged naturally in this approach.

In the case of non-unitary representations, a representation of the thermal
SU(1, 1) algebra in a double phase space has been studied. The nature of the tilde
observables is manifested through the form of the hat-Hamiltonian. As a conse-
quence, we have obtained a system of two oscillators: one of which is the dissipative
harmonic oscillator, and the other is a growing harmonic oscillator, the one that
absorbs energy. We can see, therefore, that the role of the tilde variables is to intro-
duce, in a non-obvious form, a growing oscillator to which the energy of the dis-
sipative oscillator flows. This growing oscillator is, in this case, a simple model for
the dissipative-oscillator environment, being that the effect of dissipation appears as
a consequence of the structure of the hat-Hamiltonian.
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