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Abstract

The main results of this note extend a theorem of Kesten for symmetric random walks on discrete groups
to group extensions of topological Markov chains. In contrast to the result in probability theory, there is a
notable asymmetry in the assumptions on the base. That is, it turns out that, under very mild assumptions on
the continuity and symmetry of the associated potential, amenability of the group implies that the Gurevič-
pressures of the extension and the base coincide whereas the converse holds true if the potential is Hölder
continuous and the topological Markov chain has big images and preimages. Finally, an application to
periodic hyperbolic manifolds is given.
c⃝ 2012 Elsevier Inc. All rights reserved.
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1. Introduction and statement of main results

The motivation for the analysis of the change of pressure under group extensions stems
from the attempt to relate two classical results from probability theory and geometry on the
amenability of discrete groups. The probabilistic result was obtained by Kesten in [11] and
characterises amenability in terms of the spectral radius of the Markov operator associated to
a symmetric random walk, that is, a group G is amenable if and only if the spectral radius of the
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operator acting on ℓ2(G) is equal to 1. The following counterpart in geometry was discovered
by Brooks [3] using a completely different method. Assume that G is a Kleinian group acting
on hyperbolic space Hn+1 with exponent of convergence δ(G) bigger than n/2 and that N ▹ G
is a normal subgroup. Then the bottoms of the spectra of the Laplacians on H/G and H/N
are equal if and only if G/N is amenable. Or equivalently, using the characterisation of the
bottom of the spectrum in terms of the exponents of convergence, G/N is amenable if and only if
δ(G) = δ(N ). More recently, these results were partially improved. Roblin [15] used conformal
densities to prove that amenability implies δ(G) = δ(N ) if G is of divergence type and Sharp
obtained in [19] the same statement for convex-cocompact Schottky groups using Grigorchuk’s
results on the co-growth of shortest representations (see [7]) applied to the Cayley graph of G.

In here, we consider group extensions of a topological Markov chain for a given potential
function. That is, for a topological Markov chain (ΣA, θ), a potential ϕ : ΣA → (0,∞) and a
map ψ : ΣA → H from ΣA to a discrete group H , the group extension of (ΣA, θ, ϕ) by ψ is
defined by

T : ΣA × H → ΣA × H, (x, g) → (θ(x), gψ(x))

and the lifted potential by ϕ̂ : ΣA × H → R, (x, g) → ϕ(x), where it is throughout assumed
that ψ is constant on the states W 1 of ΣA. This then gives rise to a natural notion of symmetry
through the existence of an involution W 1

→ W 1, w → wĎ such that ψ([wĎ
]) = ψ([w])−1 for

all states w ∈ W 1, where [w] refers to the cylinder associated to w. This involution extends to
finite words, leading to the notion of a weakly symmetric potential by requiring that there exists
a sequence (Dn) with limn D1/n

n = 1 such that

sup
x∈[w],y∈[wĎ]

n−1
j=0
(ϕ ◦ θ j (x))

n−1
j=0
(ϕ ◦ θ j (y))

≤ Dn,

for all w ∈ W n and with W n referring to the words of length n (see Section 3 for details).
Note that this general framework establishes a connection between random walks on groups and
the geodesic flow on the unit tangent bundle of H/N for a certain class of Kleinian groups G,
since random walks can be recovered by assuming that ΣA is a symmetric full shift equipped
with a locally constant, symmetric potential whereas the relation to the geodesic flow is obtained
through a group extension of the coding map associated with G as considered, e.g., in [1] or [12].

The main results in here extend Kesten’s result for random walks to group extensions
by replacing statements on the spectral radius by statements on the Gurevič pressure PG .
Furthermore, they reveal a certain asymmetry with respect to the method of proof and the
requirements on the mixing properties of the base transformation θ . The first result, Theorem 4.1,
essentially states that, if the potential is weakly symmetric and the group H is amenable, then
PG(T ) = PG(θ). This result is a consequence of Kesten’s result, since the assumptions give rise
to a construction of self-adjoint operators Pn on ℓ2(H), for each n ∈ N, whose spectral radii have
to be equal to exp(n PG(θ)) as a consequence of Kesten’s theorem and the amenability of H . The
arguments for obtaining the converse statement in Theorem 5.4 are more intricate and require that
the potential is Hölder continuous and summable and that θ has the big images and preimages
property. In this situation, we then have that PG(T ) = PG(θ) implies that H is amenable. The
proof is inspired by an argument of Day in [4] and relies on a careful analysis of the action of the
Ruelle operator on the embedding of ℓ2(H) into a certain subspace of C(ΣA × H).
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Finally, it is worth noting that the results of Kesten and Grigorchuk mentioned above can be
easily deduced from Theorems 4.1 and 5.4 by choosing ΣA to be a shift in the generators and ϕ
to be a suitable, locally constant, symmetric potential. Furthermore, a reformulation in terms of
Gibbs–Markov maps reveals that the results in here might be seen as an extension of Kesten’s
theorem for random walks on groups with independent, identically distributed increments to
random walks with stationary, exponentially ψ-mixing increments. This generalisation then
allows to apply the results to normal covers of Kleinian groups. That is, the theorem of Brooks
extends to the class of essentially free Kleinian groups as defined below and, in particular, to a
class of Kleinian groups with parabolic elements of arbitrary rank.

While writing this article, related results for locally constant potentials were independently
obtained by Jaerisch [8] where it is shown that under this restriction, Theorem 5.4 is a
consequence of a version of Kesten’s result for graphs in [14].

2. Topological Markov chains

For a countable alphabet I and a matrix A = (ai j : i, j ∈ I ) with ai j ∈ {0, 1} for all i, j ∈ I
and


j ai j > 0 for all i ∈ I , let the pair (ΣA, θ) denote the associated one-sided topological

Markov chain. That is,

ΣA :=

(wk : k = 0, 1, . . .) : wk ∈ I, awkwk+1 = 1 ∀i = 0, 1, . . .


,

θ : ΣA → ΣA, θ : (wk : k = 1, 2, . . .) → (wk : k = 2, 3, . . .).

A finite sequence w = (w1 . . . wn) with n ∈ N, wk ∈ I for k = 1, 2, . . . , n and awkwk+1 = 1 for
k = 1, 2, . . . , n − 1 is referred to as a word of length n, and the set

[w] := {(vk) ∈ ΣA : wk = vk ∀k = 1, 2, . . . , n}

as a cylinder of length n. The set of admissible words of length n will be denoted by W n , the
length of w ∈ W n by |w| and the set of all admissible words by W ∞

=


n W n . Furthermore,
since θn

: [w] → θn([w]) is a homeomorphism, the inverse exists and will be denoted by
τw : θn([w]) → [w]. For a, b ∈ W ∞ and n ∈ N with n ≥ |a|, set

W n
a,b = {(w1 . . . wn) ∈ W n

: (w1 . . . w|a|) = a, wnb admissible}.

As it is well known, ΣA is a Polish space with respect to the topology generated by cylinders,
and ΣA is compact and locally compact with respect to this topology if and only if I is a finite
set. Furthermore, recall that ΣA is called topologically transitive if for all a, b ∈ I , there exists
na,b ∈ N such that W na,b

a,b ≠ ∅ and that ΣA is called topologically mixing if for all a, b ∈ I ,
there exists Na,b ∈ N such that W n

a,b ≠ ∅ for all n ≥ Na,b. Moreover, a topological Markov
chain is said to have big images or big preimages if there exists a finite set Ibip ⊂ W such
that for all v ∈ W , there exists β ∈ Ibip such that (vβ) ∈ W 2 or (βv) ∈ W 2, respectively.
Finally, a topological Markov chain is said to have the big images and preimages (b.i.p.) property
if the chain is topologically mixing and has big images and preimages (see [17]). Note that the
b.i.p. property coincides with the notion of finite irreducibility for topological mixing topological
Markov chains as introduced by Mauldin and Urbański [13].

We now consider a pair (ΣA, ϕ) where ϕ : ΣA → R is a strictly positive function which we
refer to as a potential. For n ∈ N and w ∈ W n , set

Φn :=

n−1
k=0

ϕ ◦ θk and Cw := sup
x,y∈[w]

Φn(x)/Φn(y). (1)
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The potential ϕ is said to have (locally) bounded variation if ϕ is continuous and there exists
C > 0 such that Cw ≤ C for all n ∈ N and w ∈ W n , and is called potential of medium variation
if ϕ is continuous and, for all n ∈ N, there exists Cn > 0 with Cw ≤ Cn for all w ∈ W n and
limn→∞

n
√

Cn = 1. For positive sequences (an), (bn) we frequently will write an ≪ bn if there
exists C > 0 with an ≤ Cbn for all n ∈ N, and an ≍ bn if an ≪ bn ≪ an . A further, stronger
assumption on the variation is related to local Hölder continuity. Therefore, recall that the n-th
variation of a function f : ΣA → R is defined by

Vn( f ) = sup{| f (x)− f (y)| : xi = yi , i = 1, 2, . . . , n}.

The function f is referred to as a locally Hölder continuous function if there exist 0 < r < 1 and
C ≥ 1 such that Vn( f ) ≪ rn for all n ≥ 1. Moreover, we refer to a locally Hölder continuous
function with ∥ f ∥∞ < ∞ as a Hölder continuous function. We now recall the following well-
known estimate. For n ≤ m, x, y ∈ [w] for some w ∈ W m , and a locally Hölder continuous
function f ,n−1

k=0

f ◦ θk(x)− f ◦ θk(y)

 ≪
1

1 − r
rm−n . (2)

In particular, the function exp f is a potential of bounded variation. For a given potential ϕ,
the basic objects of thermodynamic formalism are partition functions. Since the state space
might be countable, we consider partition functions Zn

a for a fixed a ∈ I which are defined
by

Zn
a :=


θn(x)=x,x∈[a]

Φn(x).

Furthermore, we refer to the exponential growth rate of Zn
a , that is to

PG(θ, ϕ) := lim sup
n→∞

log n


Zn
a = lim sup

n→∞

1
n

log Zn
a ,

as the Gurevič pressure of (ΣA, θ, ϕ). This notion was introduced in [16] for topologically
mixing systems where logϕ is locally Hölder continuous. If (ΣA, θ, ϕ) is transitive and ϕ is
of medium variation, arguments in there combined with the decomposition of θ p into mixing
components, where p stands for the period of (ΣA, θ), show that PG(θ, ϕ) is independent of the
choice of a and that

PG(θ, ϕ) = lim
n→∞,W n

a,a≠∅

1
n

log Zn
a .

Furthermore, it is easy to see that PG(θ, ϕ) remains unchanged by replacing a ∈ W 1 with some
a ∈ W n . Also recall that, if logϕ is Hölder continuous and the system is topologically mixing,
then a variational principle holds (see [16]).

We now recall the definitions of conformal and Gibbs measures related to a given potential ϕ.
A Borel probability measure µ is called ϕ-conformal if

µ(θ(A)) =


A

1
ϕ

dµ
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for all Borel sets A such that θ |A is injective. For (w1 . . . wn+1) ∈ W n+1 and a potential of
medium variation, it then immediately follows that

C−1
n µ(θ([wn+1])) ≤

µ([w1 . . . wn+1])

Φn(x)
≤ Cnµ(θ([wn+1])) (3)

for all x ∈ [w1 . . . wn+1]. Note that this estimate implies that PG(θ, ϕ) = 0 is a necessary
condition for the existence of a conformal measure with respect to a potential of medium
variation. Moreover, the above estimate motivates the following definitions. Assume that there
exists a sequence (Bn : n ∈ N) with Bn ≥ 1 such that

B−1
n ≤

µ([w])

Φn(x)
< Bn (4)

for all n ∈ N, w ∈ W n and x ∈ [w]. If supn Bn < ∞, then µ is called ϕ-Gibbs measure, and if
limn→∞ B1/n

n = 1, then µ is called weak ϕ-Gibbs measure. In order to introduce a further basic
object, the Ruelle operator, we define the action of the inverse branches of τv on functions as
follows. For v ∈ W n and f : ΣA → R, set

f ◦ τv : ΣA → R, x → 1θn([v])(x) f (τv(x)),

that is f ◦ τv(x) := f (τv(x)) for x ∈ θn([v]) and f ◦ τv(x) := 0 for x ∉ θn([v]). The Ruelle
operator is then defined by

Lϕ( f ) =


v∈W 1

ϕ ◦ τv · f ◦ τv,

where f : ΣA → C is an element of an appropriate function space such that the possibly infinite
sum on the right hand side is well defined.

3. Group extensions of topological Markov chains

To introduce the basic object of our analysis, fix a countable discrete group G and a map
ψ : ΣA → G such that ψ is constant on [w] for all w ∈ W 1. Then, with X := ΣA × G equipped
with the product topology, the group extension or G-extension (X, T ) of (ΣA, θ) is defined by

T : X → X, (x, g) → (θx, gψ(x)).

Observe that (X, T ) also is a topological Markov chain and that its cylinder sets are given by
[w, g] := [w] × {g}, for w ∈ W ∞ and g ∈ G. Furthermore, set Xg := ΣA × {g} and

ψn(x) := ψ(x)ψ(θx) · · ·ψ(θn−1x)

for n ∈ N and x ∈ ΣA. Observe that ψn : ΣA → G is constant on cylinders of length n and, in
particular, that ψ(w) := ψn(x), for some x ∈ [w] and w ∈ W n , is well defined. Moreover, for
a, b ∈ W 1 and n ∈ N, set

Gn(a, b) := {ψ(w) : n ∈ N, w ∈ W n, [a] ⊃ [w], θn([w]) ⊃ [b]}.

Note that (X, T ) is topologically transitive if and only if, for a, b ∈ W 1, g ∈ G, there exists
n ∈ N with g ∈ Gn(a, b), and that (T, X) is topologically mixing if and only if, for a, b ∈ W 1

and g ∈ G, there exists N ∈ N (depending on a, b, g) such that g ∈ Gn(a, b) for all n > N .
Note that the base transformation (θ,ΣA) of a topologically transitive group extension has to
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be topologically transitive, and topologically mixing if the extension is topologically mixing,
respectively. Furthermore, if (T, X) is topologically transitive, then {ψ(a) : a ∈ W 1

} is a
generating set for G.

Throughout, we now fix a topological mixing topological Markov chain (ΣA, θ), and a
topological transitive G-extension (T, X). Furthermore, we fix a (positive) potential ϕ : ΣA → R
with PG(θ, ϕ) = 0. Note that ϕ lifts to a potential ϕ̂ on X by setting ϕ̂(x, g) := ϕ(x). For
ease of notation, we will not distinguish between ϕ̂ and ϕ. Moreover, for v ∈ W ∞, the inverse
branch given by [v, ·] will be as well denoted by τv , that is τv(x, g) := (τv(x), gψ(v)−1). In
order to distinguish between the Ruelle operator and the partition functions with respect to θ
and T , these objects for the group extension will be written in calligraphic letters, that is, for
a ∈ W, ξ ∈ [a] × {id}, (η, g) ∈ X , and n ∈ N,

L( f )(ξ, g) :=


v∈W

ϕ ◦ τv(ξ) f ◦ τv(ξ, g), Z n
a,g :=


T n (x,g)=(x,g),

x∈[a]

Φn(x).

4. Extensions by amenable groups

In this section, we show that the Gurevič pressure remains unchanged under extension by
an amenable group. In particular, it will turn out that this statement is true under very mild
conditions. Also note that a similar result was proven in [19] for extensions of subshifts of finite
type with respect to a hyperbolic potential. We first recall the definition of amenability using the
Følner condition (see [5]). That is, G is referred to as an amenable group if and only if there
exists a sequence (Kn) of finite subsets of G with


n Kn = G such that

lim
n→∞

|gKn△Kn|/|Kn| = 0 ∀g ∈ G.

In here, △ refers to the symmetric difference, and | · | to the cardinality of a set. We are now
interested in the characterisation of amenability in terms of the Gurevič pressure of a group
extension. As it will turn out, this is an extension of the following result of Kesten in [11]. Let m
be a probability measure on G with m(g−1) = m(g) and assume that the support supp(m) of m
is a generating set for G. Then the spectral radius of the operator P on the complex space ℓ2(G)
given by P f (γ ) :=


g∈G f (γ g−1)m(g) is equal to one if and only if G is amenable.

In order to obtain an extension of this result to shift spaces, one has to consider group
extensions with symmetry. Namely, we say that (ΣA, θ, ψ) is symmetric if there exists W 1

→

W 1, w → wĎ with the following properties.

1. For w ∈ W 1, (wĎ)Ď = w.
2. For v,w ∈ W 1, the word (vw) is admissible if and only if (wĎvĎ) is admissible.
3. ψ(vĎ) = ψ(v)−1 for all v ∈ W 1.

Observe that this notion of symmetry can be extended to an involution of W ∞ by defining
(w1 . . . wn)

Ď
:= (w

Ď
n . . . w

Ď
1). We refer to ϕ as a weakly symmetric potential if ϕ is continuous

and there exists a sequence (Dn) with limn→∞
n
√

Dn = 1 such that, for all n ∈ N and w ∈ W n ,

sup
x∈[w],y∈[wĎ]

Φn(x)/Φn(y) ≤ Dn .

If sup Dn < ∞, then ϕ is referred to as a symmetric potential. Note that a weakly symmetric or
symmetric potential is necessarily of medium variation with respect to Cn := D2

n or of bounded
variation, respectively.
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We now prove that amenability of G implies that PG(T ) = PG(θ). For this purpose, we
construct a family of self-adjoint operators on ℓ2(G) for symmetric group extensions as follows.
By transitivity, there exists a ∈ W ∞ with ψ(a) = id. Furthermore, for v ∈ W ∞, we have that
avaĎ is admissible if and only if (avaĎ)Ď = avĎaĎ is admissible. Hence, for n > |a|,

ι : W n
a,aĎ → W n

a,aĎ , ι(av) := avĎ

defines an involution. Since ψ(a) = id, it follows that ψ(v) = ψ(ιv)−1 for all v ∈ W n
a,aĎ

. We

now assume that PG(θ) is finite and fix ξ ∈ [aĎ
]. For n ∈ N and v ∈ W n

a,aĎ
, set

π(ξ, v) :=
1
2
(Φn(τv(ξ))+ Φn(τιv(ξ))).

This then gives rise to an operator Pn : ℓ2(G) → ℓ2(G) on the complex Hilbert space ℓ2(G) by

Pn( f )(γ ) :=


v∈W n

a,aĎ

π(ξ, v) f (γψ(v)−1),

where, for ease of notation, the fact that the operator Pn depends on ξ is omitted. Note that
Pn(1) = Ln

ϕ(1[a])(ξ) < ∞ and, with ⟨ f, g⟩ =


f (γ )g(γ ) referring to the standard inner
product, ⟨1γ , Pn(1γ ∗)⟩ = ⟨Pn(1γ ), 1γ ∗⟩, for γ, γ ∗

∈ G. In particular, this implies that Pn is
self-adjoint.

Combining ⟨1γ , Pn(1γ )⟩ = ⟨1id, Pn(1id)⟩ for all γ ∈ G with Pn being self-adjoint then gives
that the spectral radius ρn of Pn satisfies (see, e.g., [9])

ρn = lim sup
k→∞

k


⟨1id, Pk
n (1id)⟩,

and that, if Pn is a positive operator, then the lim sup above is a limit. As an immediate
corollary to Kesten’s theorem on the spectral radius of the Markov operator associated with a
symmetric random walk (see [11] and [9, Theorem 5]), we obtain the following theorem for
group extensions under very mild conditions.

Theorem 4.1. Assume that T is a topologically transitive, symmetric group extension of the
topologically mixing topological Markov chain (ΣA, θ), ϕ is weakly symmetric and PG(θ) is
finite. Then PG(T ) = PG(θ), if G is an amenable group.

Proof. Since we obviously have that PG(T ) ≤ PG(θ), it remains to prove the reverse inequality.
For n ≥ |a| and g ∈ G, set

mn(g) :=
1

Pn(1)


v∈W n

a,aĎ
:ψ(v)=g

π(ξ, v).

Note that mn(g) is well defined since |PG(θ)| < ∞ and that mn is a symmetric probability
measure on G, that is mn(g) = mn(g−1). Moreover, note that the group generated by the support
of mn is a subgroup of G and hence is amenable. Since the Markov operator associated with the
symmetric random walk given by mn coincides with Pn(·)/Pn(1) we have by Kesten’s theorem
that ρn = Pn(1). In order to prove the assertion it suffices to show that limn log(ρn)/n = PG(θ)

and lim supn log(ρn)/n ≤ PG(T ).
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Step 1. For n ≥ |a|, we have ιw ∈ W n
a,aĎ

if and only if w ∈ W n
a,aĎ

. Hence,

ρn = Pn(1) =


w∈W n

a,aĎ

1
2
(Φn(τw(ξ))+ Φn(τιw(ξ))) =


w∈W n

a,aĎ

Φn(τw(ξ)).

Choose k ≥ |a| and v ∈ W k
a,aĎ

. For n ≥ k, the medium variation property of ϕ gives

ρn =


w∈W n

a,aĎ

Φn(τw(ξ)) ≥ C−1
k C−1

n Φk(τv(ξ)) Zn−k
b ,

where b := (a|a|)
Ď for a = (a1 . . . a|a|). Hence, lim supn(log ρn)/n = PG(θ).

Step 2. For ease of notation, we will write x = y±k z for y−k z ≤ x ≤ yk z. Then, for w ∈ W n
a,aĎ

,
weak symmetry implies

Φn(τw(ξ)) = Φn+|a|(τw(ξ))/Φ|a|(ξ) = (Cn Dn+|a|)
±1Φn(τιw(ξ)).

Hence, there exists (Dn) with π(ξ,w) = Φn(τw(ξ))D±1
n and limn D1/n

n = 1. By transitivity,
there exist l ∈ N, and v ∈ W l

aĎa
with ψ(v) = id. Hence, for w1, w2, . . . , wk ∈ W n

aaĎ
, we have

w∗
:= (w1vw2v . . . wkv) ∈ W k(n+l)

aa and, for x ∈ [w∗
],

Φk(n+l)(x) ≥
D−1

n inf{Φl(y) : y ∈ [va]}
k k

i=1
π(ξ,wi ).

This gives rise to the following estimate for ⟨1id, Pk
n (1id)⟩ in terms of the partition function

Z k(n+l)
a,id with respect to T as defined above.

1
nk

log⟨1id, Pk
n (1id)⟩ ≤

1
n log

D−1
n inf{Φl(y) : y ∈ [va]}


+

1
nk log Z k(n+l)

a,id .

Since P2
n is a positive operator with ∥P2

n ∥ = ρ2
n , we obtain, by taking the limit for k → ∞, k ∈

2N and then for n → ∞, that limn log(ρn)/n ≤ PG(T ). �

5. Kesten’s theorem for group extensions

The essential ingredient of the proof of Theorem 4.1 is the fact that a symmetric probability
measure defines a symmetric operator on ℓ2(G). So, in order to prove the analogue of Kesten’s
result for group extensions of topological Markov chains, it remains to show that PG(θ) =

PG(T ) implies amenability, where one is tempted again to use the spectral radius formula
applied to symmetric operators on ℓ2(G) as, e.g., in [9, p. 478]. However, it will turn out that
the key step in here is to carefully analyse an embedding of ℓ2(G) and use an argument based
on uniform rotundity to show that in the case of amenable groups, almost eigenfunctions are
indicator functions.

The arguments of proof in here rely on stronger topological mixing properties in the base.
That is, we will have to assume that the base has the b.i.p.-property. As a first consequence of
this property, we obtain the existence of the following finite subset of W ∞.

Lemma 5.1. Assume that (X, T ) is a topologically transitive group extension of (ΣA, θ) and
that (ΣA, θ) has the b.i.p.-property. Then there exist n ∈ N and a finite subset J of W n such
that for each pair (β, β ′) with β, β ′

∈ Ibip there exists wβ,β ′ ∈ J such that (wβ,β ′) ∈ W n and
ψn(wβ,β ′) = id.



458 M. Stadlbauer / Advances in Mathematics 235 (2013) 450–468

Proof. Let p ∈ N refer to the period p of the transitive topological Markov chain (X, T ).
Then, for each a ∈ W , there exists Na ∈ N such that T ps([a, g]) ⊃ [a, g] for all s ≥ Na
and g ∈ G. Hence, for each pair (β, β ′) ∈ I 2

bip with (β ′β) admissible, there is Nβ,β ′ such

that for each s ≥ Nβ,β ′ there exists vβ,β ′ ∈ W ps−2 such that (β ′βvβ,β ′β ′) is admissible and
ψps(β

′βvβ,β ′) = ψps(βvβ,β ′β ′) = id. Since Ibip is finite it follows that there exists k (given by
max{pNβ,β ′ : (β, β ′) ∈ I 2

bip}) such that vβ,β ′ can be always chosen to be an element of W k−2.
By possibly adding finitely many states we may assume without loss of generality that the

subsystem of ΣA with alphabet Ibip is topologically mixing. It then follows from this that there
exists some l ∈ N such that each pair (β0, βl) in Ibip can be connected by an admissible word of
the form

wβ0,βl := (β0vβ0,β1β1β2vβ2,β3β3β4 . . . vβl−1,βlβl).

The assertion follows with J := {wβ,β ′ : β, β ′
∈ Ibip}. �

A further important consequence of the b.i.p.-property is the existence of an invariant Gibbs
measure. That is, if (ΣA, θ) and ϕ are given such that (ΣA, θ) has the b.i.p.-property, logϕ is
Hölder continuous and ∥Lϕ(1)∥∞ < ∞, then there exist a exp(−PG(θ, ϕ)) ·ϕ-Gibbs measure µ
and a Hölder-continuous eigenfunction h such that hdµ is an invariant probability measure. It is
also worth noting that (ΣA, θ) has the Gibbs–Markov property as defined below with respect to
µ (see [13,17]). Moreover, since the function log h is uniformly bounded from above and below,
we assume from now on, without loss of generality, that PG(θ, ϕ) = 0 and Lϕ(1) = 1.

The existence of µ then gives rise to the following definition of H1 and H∞. Given a
measurable function f : X → R, g ∈ G and p = 1 or p = ∞, set ∥ f ∥

g
p := ∥ f (· , g)∥p

and define

[[ f ]]p :=


g∈G

(∥ f ∥
g
p)

2 and H p := { f : X → R : [[ f ]]p < ∞}.

Furthermore, set Hc := { f ∈ H : f is constant on Xg∀g ∈ G} and ρ := exp(PG(T, ϕ̂)).

Proposition 5.2. The function spaces (H1, [[· ]]1) and (H∞, [[· ]]∞) are Banach spaces, the
operators Lk

ϕ : H∞ → H∞ are bounded and there exists C ≥ 1 such that [[Lk
ϕ ]]∞ ≤ C

for all k ∈ N. Furthermore,

Λk := sup


[[Lk
ϕ( f ) ]]1 /[[ f ]]1 : f ≥ 0, f ∈ Hc


≤ 1

and lim supk→∞(Λk)
1/k

≥ ρ.

Proof. The proof that (H p, [[· ]]p) are Banach spaces is standard and therefore omitted. In order
to prove the uniform bound for [[Lk

ϕ ]]∞, assume that f ∈ H∞ and k ∈ N. Using Jensen’s
inequality, we obtain

[[Lk
ϕ( f ) ]]2

∞ ≤


g∈G

sup
x∈ΣA

 
v∈W k

Φk ◦ τv(x)∥ f ∥
gψk (v)

−1

∞

2

≤


g∈G

sup
x∈ΣA


v∈W k

Φk ◦ τv(x)

∥ f ∥

gψk (v)
−1

∞

2

≤ C

v∈W k

µ([v])[[ f ]]
2
∞ = C[[ f ]]

2
∞,
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where C is given by the Gibbs property of µ on ΣA (see (4)). Hence, C is an upper bound for
[[Lk

ϕ ]]∞, independent of k.
Now assume that f ∈ Hc. It then follows from the conformality of µ that

[[Lk
ϕ( f ) ]]1 ≤


v∈W k

[[Φk ◦ τv f ◦ τv ]]1 =


v∈W k


g∈G


Φk ◦ τv f ◦ τv(·, g)dµ

2
1/2

=


v∈W k


g∈G

µ([v])2 f (x, gψk(v)
−1)2

1/2

= [[ f ]]1, (5)

where x ∈ ΣA is arbitrary. Hence, Λk ≤ 1 for all k ∈ N. Finally, observe that the Gibbs property
of µ implies that

[[Ln
ϕ(1X id) ]]1 ≥ ∥Ln

ϕ(1X id)∥
id
1 =


v:ψn(v)=id

µ([v]) ≫


x :T n(x,id)=(x,id)

Φn(x) ≥ Z n
a,id,

for all a ∈ W 1. Hence, lim supn→∞(Λn)
1/n

≥ ρ. �

The proof of the following result is inspired by an argument of Day (see [4, Lemma 4]) which
relies on the rotundity of ℓ2(G). Recall that a Banach space (B, ∥ · ∥) is uniformly rotund if for
all δ > 0 there exists ϵ > 0 such that, for all f, g with ∥ f − g∥ ≥ δ and ∥ f ∥ = ∥g∥ = 1, it
follows that ∥ f + g∥ ≤ 2 − ϵ. Note that the space H does not has this property but the closed
subspace Hc which is isomorphic to ℓ2(G). Since ℓ2(G) is uniformly rotund, it follows that Hc
has this property as well.

Lemma 5.3. Assume that ρ = 1. Then there exists n ∈ N such that, for given ϵ > 0, there exists
f ∈ Hc with f ≥ 0 and [[Ln

ϕ( f )− f ]]1 ≤ ϵ[[ f ]]1.

Proof. Let k be given by J ⊂ W k where J refers to the finite set given by Lemma 5.1 and
assume that

δ1 := inf

[[Lk

ϕ( f )− f ]]1 /[[ f ]]1 : f ∈ Hc, f ≥ 0, f ≠ 0

> 0.

Step 1. We begin by showing that δ1 > 0 implies that there exists a finite set of words such

that, for all x ∈ ΣA and f ∈ Hc, the estimate (6) below holds and that two arbitrary words can
be joined by elements of this finite set. In order to do so, note that it is possible to choose
a finite set W ∗

⊂ W k with

v∈W k\W ∗ µ([v]) ≤ δ1/(4). For f ∈ Hc, we hence have

that  
v∈W k\W ∗

Φk ◦ τv f ◦ τv


1

≤


v∈W k\W ∗

µ([w]) [[ f ]]1 ≤ δ1 [[ f ]]1 /(4).

Using Lϕ(1) = 1 and the △-inequality then gives

δ1 [[ f ]]1 ≤ [[Lk
ϕ( f )− f ]]

1
=

 
v∈W k

Φk ◦ τv( f ◦ τv − f )


1

≤


v∈W ∗

[[Φk ◦ τv( f ◦ τv − f )]]1
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+

 
v∉W ∗

Φk ◦ τv f ◦ τv


1

+

 
v∉W ∗

Φk ◦ τv f


1

≤


v∈W ∗

µ([v])[[( f ◦ τv − f )1θk ([v])×G ]]1 +δ1/2.

It follows from a convex sum argument that there exists w f ∈ W ∗ with [[( f ◦ τw f − f )
1θk ([w f ])×G ]]1 ≥ δ1[[ f ]]1 /2. Furthermore, note that the b.i.p.-property implies that µ(θk([v])) is

uniformly bounded from below for all v ∈ W k . With f̂ (g) referring to f (x, g), we hence obtain
that

[[( f ◦ τw f − f )1θk ([w f ])×G ]]1 = µ(θk([w f ]))∥ f̂ − f̂ (· ψ(w f )
−1)∥ℓ2(G)

≫ ∥ f̂ − f̂ (· ψ(w f )
−1)∥ℓ2(G).

For x ∈ ΣA and a ∈ Ibip with [a] ⊂ θk([w f ]), we now choose wa, wx ∈ J such that
x ∈ θk([wx ]), (waa) is admissible, and u := (wawx ), v := (w fwx ) are in W 2k . Since
ψk(wa) = ψk(wx ) = id and f ∈ Hc, we have ψ2k(u) = id and ψ2k(v) = ψk(w f ). Hence,
the rotundity of Hc implies that there exists a uniform constant δ2 > 0 with

1
2

∥ f ◦ τu(x, · )+ f ◦ τv(x, · )∥ℓ2(G) ≤ (1 − δ2)[[ f ]]1, ∀x ∈ [a]. (6)

Furthermore, we may choose wa ∈ J above such that there exists β ∈ Ibip with [wa] ∪ [w f ] ⊂

θ([β]). By substituting u and v with (wu) and (wv), respectively, for some admissible word w
in J m−2 and m ∈ N to be specified later, we hence may assume that there exists a finite subset
WĎ of W mk with the following properties. For all wi ∈ W ni , i = 1, 2 and f ∈ Hc, there exist
u(w1, f, w2) and v(w1, f, w2) in WĎ such that

1. the estimate (6) holds for u := u(w1, f, w2) and v := v(w1, f, w2), with x ∈ [w2],
2. the first k(m − 2) letters of u(w1, f, w2) and v(w1, f, w2) coincide,
3. w1u(w1, f, w2)w2 and w1v(w1, f, w2)w2 are admissible.

Step 2. In order to obtain the estimate in (8), we prove that the fluctuations of the potential can
be absorbed into the uniform factor in (6). Observe that it follows from the Hölder continuity of
logϕ that we may choose m such that

1 − δ2 ≤
Φn ◦ τw1(τu(w1, f,w2)(x))

Φn ◦ τw1(τv(w1, f,w2)(x))
≤


1 − δ2

−1
, (7)

for all n ∈ N and w ∈ W n . Moreover, since |WĎ
| < ∞, we have

2α := inf


Φmk(τu(x)) : x ∈ θmk([u]), u ∈ WĎ

> 0.

By dividing each u ∈ WĎ into two words u1 and u2 and setting Φmk(τu2(x)) := Φmk(τu(x))−α
and Φmk(τu1(x)) := α for each x ∈ θmk([u]), we may assume without loss of generality that
Φmk(τu(x)) = α for all x ∈ θmk([u]) and u ∈ WĎ.

By combining the above considerations, we are now in a position to prove the main estimate
with respect to WĎ, for a given function f ∈ Hc and (k + 1) finite words wi ∈ W ni , for
i = 0, 1, . . . , k. For a finite word w, set fw(x, g) := f (τw(x), gψ(w)−1), and define by



M. Stadlbauer / Advances in Mathematics 235 (2013) 450–468 461

induction, for j = 1, 2, . . . , k,

f j :=


(i1,...,i j−1)∈{1,2} j−1

f
w0u

(i1)
1 w1...u

(i j−1)

j−1 w j−1
,

u(1)j := u(w j−1, f j , w j ), u(2)j := v(w j−1, f j , w j ).

We then have, where N := n0 + n1 + · · · + nn + nmk, 
(i1,...,in)∈{1,2}n

ΦN (τ
w0u

(i1)
1 w1...u

(in )
n wn

(x)) f (τ
w0u

(i1)
1 w1...u

(in )
n wn

)(x, · )


ℓ2(G)

≤


max

(i1,...,in)∈{1,2}n
ΦN (τ

w0u
(i1)
1 ...u(in )n wn

(x))


×

 
(i1,...,in)∈{1,2}n

f̂
w0u

(i1)
1 ...wn−1

(· ψ(wn)
−1ψ(u(in)

n )−1)


ℓ2(G)

=


max

(i1,...,in)∈{1,2}n
ΦN (τ

w0u
(i1)
1 ...u(in )n wn

(x))

 
in∈{1,2}

f̂n(· ψ((u
(in)
n ))−1)


ℓ2(G)

≤


max

(i1,...,in)∈{1,2}n
ΦN (τ

w0u
(i1)
1 ...u(in )n wn

(x))


(2(1 − δ2))

×




in−1∈{1,2}

f̂n−1(· ψ(u
(in−1)

n−1 )−1)


ℓ2(G)

.

Combining (7) with Φmk |[u] = α for all u ∈ WĎ, we hence obtain that, with δ3 := 1 −
√

1 − δ2, 
(i1,...,in)∈{1,2}n

ΦN (τ
w0u

(i1)
1 w1...u

(in )
n wn

(x)) f (τ
w0u

(i1)
1 w1...u

(in )
n wn

)(x, · )


ℓ2(G)

≤


max

(i1,...,in)∈{1,2}n
ΦN (τ

w0u
(i1)
1 w1...u

(in )
n wn

(x))


(2(1 − δ2))

n
[[ f ]]1

≤

 
(i1,...,in)∈{1,2}n

ΦN (τ
w0u

(i1)
1 w1...u

(in )
n wn

(x))


(1 − δ3)

n
[[ f ]]1 . (8)

Step 3. We prove that δ1 > 0 implies that ∥Lnmk
ϕ ( f )(x, ·)∥ℓ2(G) decays exponentially and show

that this is a contradiction to the last statement in Proposition 5.2.
We now fix f ∈ Hc and x ∈ ΣA. For n ∈ N, we refer to F as the set of all subsets of

{1, 2, . . . , n} and define, for each ω := {k1, k2, . . . , kd} ∈ F , a subset Vω of W nmk as follows.

A word w = (w1 . . . wn) ∈ W nmk is an element of Vω if and only if there exist w
(i j )

k j
∈ WĎ, for

i j = 1, 2 and j = 1, . . . , d, such that wk j = w
(1)
k j

and
⋆

Φnmk(τv(x)) f (τv(x, ·))


ℓ2(G)

≤


⋆

Φnmk(τv(x))


(1 − δ3)

|ω|
[[ f ]]1,

where ⋆ stands for the summation over all v = (v1 . . . vn) with vi = wi for i ∉ ω and
vi ∈ {w

(1)
i , w

(2)
i } or i ∈ ω. Observe that the construction of u(1)i and u(2)i above and the estimate
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(8) imply that {Vω : ω ∈ F } is a covering of W nmk . Hence,

V ∗
ω := Vω \

 
ω⊂ω′,ω≠ω′

Vω′


defines a partition of W nmk . Furthermore, for ω := {k1, k2, . . . , kd}, j ∈ {1, . . . , d} such that
k j − 1 ∉ ω and w1 . . . wn ∈ V ∗

ω, we have
v1...vk j −1wk j ...wn∈V ∗

ω

Φmk(τvk j −1wk j ...wn (x)) ≤ 1 − 2α,

since there exists at least one pair of elements w(i) (i = 1, 2) in WĎ such that w1 . . . w
(i)

wk j . . . wn ∈ V ∗

ω′ with ω′
= ω ∪ {k j − 1}. Hence,

∥Lnmk
ϕ ( f )(x, · )∥ℓ2(G) =



ω∈F


w∈V ∗

ω

Φnmk(τw(x)) f̂ (· ψ−1
w )


ℓ2(G)

≤


ω∈F

(1 − 2α)n−|ω|(2α)|ω|(1 − δ3)
|ω|

[[ f ]]1

=

n
j=0

n

k


(1 − 2α)n−k(2α(1 − δ3))

k
[[ f ]]1 = (1 − 2αδ)n[[ f ]]1 .

By applying Jensen’s inequality, we obtain [[Lnmk
ϕ ( f ) ]]1 ≤ (1 − 2αδ)n[[ f ]]1 which is a

contradiction to ρ = 1 by Proposition 5.2. Hence, δ1 = 0. �

We are now in a position to prove the converse to Theorem 4.1.

Theorem 5.4. Assume that (ΣA, θ) is a topological Markov chain with the b.i.p.-property, that
(X, T ) is a topologically transitive G-extension and that ϕ is a Hölder continuous potential with
∥Lϕ(1)∥∞ < ∞. Then PG(T, ϕ) = PG(θ, ϕ) implies that the group G is amenable.

Proof. We assume without loss of generality that PG(θ, ϕ) = 0. Now choose a finite subset K of
G. It then follows by decomposition of T into mixing components that there exists m ∈ N such
that m is a multiple of n in Lemma 5.3 and K ⊂ {ψ(v) : v ∈ W m

}. In particular, there exists a
finite subset WK of W m with

K = {ψ(v) : v ∈ WK }.

By Lemma 5.3, there exists a sequence of positive functions ( fk) in Hc with limk→∞[[Lm( fk)−

fk ]]1 = 0, fk ≥ 0 and [[ fk ]]1 = 1 for all k ∈ N. Note that this, in particular, implies that
limk→∞[[Lm( fk) ]]1 = 1. In order to show that [[( fk ◦ τv − fk) · 1θm ([v])×G ]]1 → 0 for all
v ∈ WK , assume that there exists v ∈ WK with lim infk[[( fk ◦ τv − fk) · 1θm ([v])×G ]]1 > 0. By
the argument in the first step of proof of Lemma 5.3, this implies that [[Lm( fk) ]]1 is bounded
away from 1, which is a contradiction. Hence, lim infk[[( fk ◦ τv − fk) · 1[θm ([v]),·] ]]1 = 0 for all
v ∈ WK , and, by taking a subsequence, we may assume without loss of generality that

lim
k→∞

[[( fk ◦ τv − fk) · 1θm ([v])×G ]]1 = 0, ∀v ∈ WK .
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Furthermore, recall that the Hölder inequality implies, with f̂k(g) := fk(x, g) and h ∈ G, that

∥ f̂k
2
(·)− f̂k

2
(·h)∥1 =


g∈G

| f̂k
2
(g)− f̂k

2
(gh)|

=


g∈G

| f̂k(g)− f̂k(gh)| · | f̂k(g)+ f̂k(gh)|

≤ ∥ f̂k(·)− f̂k(·h)∥2 · ∥ f̂k(·)+ f̂k(·h)∥2 ≤ 2∥ f̂k(·)− f̂k(·h)∥2. (9)

We now fix k to be specified later and use the following representation of f̂k
2
. There exist p ∈

N ∪ {∞} and λi > 0 and Ai ⊂ G with Ai ⊂ Ai+1, for 1 ≤ i < p, such that f̂k
2

=
p

i=1 λi 1Ai .
In particular, observe that

p
i=1 λi |Ai | = 1 and that (Ai h\ Ai )∩(A j \ A j h) = ∅ by monotonicity

of (Ai ). Hence, f̂k
2
(·)− f̂k

2
(·h)


1

=


g∈G


i

λi (1Ai (g)− 1Ai h−1(g))


=


g∈G

p
i=1

λi 1Ai △Ai h−1(g) =

p
i=1

λi

Ai△Ai h
−1
 . (10)

We are now in a position to prove the amenability of G. For ϵ > 0, choose k such that

[[( fk ◦ τv − fk) · 1[θm (v),·]]] = ∥ f̂k(·)− f̂k(·ψm(v)
−1)∥2 ≤ ϵ/|WK |

for all v ∈ WK . Combining estimate (9) and the identity (10) then implies that

ϵ ≥
1
2

p
i=1

λi


h∈K

|Ai h△Ai | .

Hence, there exists 1 ≤ i ≤ p, such that


h∈K |Ai h△Ai | ≤ 2ϵ|Ai |. Note that the above
argument shows that for each finite set K and ϵ > 0, there exists a (K , ϵ)-Følner set A, that is A
is finite and

h∈K

|Ah△A| ≤ ϵ|A|.

In order to prove amenability of G through the construction of a Følner sequence (Bn), choose
a sequence of finite sets (Kn) with Kn ↗ G and assume, by induction, that Bn+1 is a
(Kn ∪ Bn, 1/n)-Følner set. It is then easy to see that lim |gBn△Bn|/|Bn| = 0 for all g ∈ G. �

It is worth noting that the proof is inspired by an argument in [6] where the identity (10) was
used to derive a weak Følner condition. However, there is an alternative chain of arguments for
the proof. For n ∈ N and f ∈ ℓ2(G), set Qn( f )(g) :=


v∈W µ([v]) f (gψ−1

v ). It follows from
Lemma 5.3 that ∥Qn∥ = 1. Hence, by a result of Day ([4, Theorem 1(d)]), G is amenable. We
now present two immediate applications of our results to the co-growth of groups and group
extensions of Gibbs–Markov maps.

Co-growth. As a corollary of Theorems 4.1 and 5.4, we obtain the criteria for amenability in
terms of the co-growth as introduced in [7]. For a set of generators G = {γ1, γ

−1
1 , . . . , γ−1

r }

of G, let ΣA be the subshift of finite type with W = G and transition matrix (agh) given by
agh = 0 if and only if (g, h) is equal to (γi , γ

−1
1 ) or (γ−1

i , γ1) for some i = 1, . . . , r . With
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respect to the potential 1 and the cocycle ψ |[g] = g, the Grigorchuk–Cohen criterion follows
from PG(θ) = log(|G| − 1). That is, G is amenable if and only if

lim sup
n→∞

|{w ∈ W n
: ψn(w) = id}|

1/n
= |G| − 1 = 2r − 1.

Gibbs–Markov maps. The class of Gibbs–Markov maps was implicitly introduced in [2], and we
recall its definition now. Letµ be a Borel probability measure on ΣA such that, for allw ∈ W 1, µ

and µ ◦ τw are equivalent. Then (ΣA, θ, µ) is called a Gibbs–Markov map if inf{µ(θ([w])) :

w ∈ W 1
} > 0 and there exists 0 < r < 1 such that, for all m, n ∈ N, v ∈ W m, w ∈ W n with

(vw) ∈ W m+n ,

sup
x,y∈[w]

log
dµ ◦ τv

dµ
(x)− log

dµ ◦ τv

dµ
(y)

 ≪ rn . (11)

Furthermore, we refer to a group extension of a Gibbs–Markov map as weakly symmetric if
(ΣA, θ, ψ) is symmetric and

lim
n→∞

sup
w∈W n

n

µ([w])/µ([wĎ]) = 1.

Theorem 5.5. Assume that (ΣA, θ, µ) is a topologically mixing Gibbs–Markov map with the
b.i.p.-property such that (X, T ) is a topologically transitive G-extension.
1. If the group extension is weakly symmetric and G is amenable, then

lim sup
n→∞

(µ({x ∈ ΣA : ψn(x) = id})1/n) = 1. (12)

2. If (12) holds, then G is amenable.

Proof. Set Φn := dµ/dµ ◦ θ , for n ∈ N. Since (dµ/dµ ◦ θ)(x) = (dµ ◦ τv/dµ)(θn(x)),
for x ∈ [v] and v ∈ W n , observe that the Gibbs–Markov property in (11) implies that Φn is
of bounded variation and log Φn is locally Hölder continuous. Furthermore, combining the last
estimate in the proof of Proposition 5.2 and the finiteness of J ⊂ W k of Lemma 5.1, we obtain

Z n+k
a,id ≫ µ({x : ψn(x) = id}) ≫ Z n

a,id,

for all a ∈ W 1 and n ∈ N. Hence, PG(T ) = lim supn(1/n) logµ({x : ψn(x) = id}) and the
result follows from Theorems 4.1 and 5.4. �

Note that the above result is an extension of Kesten’s result to a class of random walks on
groups with stationary increments.

6. An application to hyperbolic geometry

In order to apply the above results to normal covers of hyperbolic manifolds, we recall
the following definition from [20]. A Kleinian group is called essentially free if there exists
a Poincaré fundamental polyhedron F with faces f1, f2, . . . , f2n and associated generators
g1, g2 . . . g2n of G with gi ( fi ) = fi+n, g−1

i ( fi+n) = fi and g−1
i = gi+n for i = 1, . . . , n,

such that the following conditions are satisfied. In here, we refer to (·)H as the closure in H.

1. If ( fi )H ∩


j≠i f j


H

≠ ∅ for some i = 1, 2, . . . , n, then gi , gi+n are hyperbolic

transformations, and ( fi+n)H ∩


j≠i+n f j


H

≠ ∅,
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2. if ( fi )H ∩ ( f j )H is a single point p for some j = 1, 2, . . . , 2n, then p is a parabolic fixed
point,

3. if fi ∩ f j ≠ ∅ for some j = 1, 2, . . . , 2n, then gi g j = g j gi .

Observe that this class comprises all non-cocompact, geometrically finite Fuchsian groups, the
class of Schottky groups, and in general gives rise to geometrically finite hyperbolic manifolds
which may have cusps of arbitrary rank.

We now proceed with the construction of the associated coding map. Fix a point o in the
interior F , and denote by ai the intersection of the shadow of fi and the radial limit set Lr (G) of
G. Furthermore, denote by κ the inversion, acting on { fi : i = 1, . . . , 2n}, {gi : i = 1, . . . , 2n}

and {ai : i = 1, . . . , 2n}, which is defined by κ fi = fi+n , κgi = gi+n and κai = ai+n ,
respectively. Now let a be an atom of the partition α generated by {ai : i = 1, . . . , 2n}.
Hence there exist 1 ≤ k ≤ 2n and i1, . . . , ik ∈ {1, . . . , 2n} such that a =

k
i=1 ail . Choose

ga ∈ {gil : k = 1, . . . , k}, and for κa :=
k

i=1 κail , set gκa = g−1
a . This then gives rise to the

coding map Γ defined by

Γ : Lr (G) → Lr (G), θ(x) = ga(x) for x ∈ a, a ∈ α

and a canonical symmetry given by aĎ
:= κa. For further details of this construction, we refer

to [20], where it is shown, that θ is well defined, α is a Markov partition and the underlying
subshift of finite type is topologically mixing. In particular, Lr (G) can be identified with a shift
space ΣA and Γ with the one-sided shift map.

In order to specify a potential adapted to the geometry of H, recall that the Poisson kernel K
with respect to the ball model is given by, for x ∈ ∂H and o ∈ H,

K(o, x) :=
1 − |g(o)|2

|g(o)− x |2
.

It is well known that log K(g(o), x), for g ∈ G, is equal to the orientated hyperbolic distance
between o and the horocycle through g(o) and x . Note that this horocyclic distance sometimes
also is referred to as the Busemann cocycle. Furthermore, we recall the following for the potential
given by

ϕ(x) = (K(ga(o), x))δ, (13)

for x ∈ a, a ∈ α and δ > 0 to be specified later. If G is convex cocompact, then logϕ is Hölder
continuous with respect to the shift metric induced by ΣA. In case that G is essentially free and
contains parabolic elements, set

P := F ∩ {p ∈ L(G) : p is a fixed point of a parabolic element in G}.

Then, if B is a subset of Lr (G) which is bounded away from P and measurable with respect to
some finite refinement by preimages of α, the potential associated with the first return map to
B is Hölder continuous (see [10, Lemmata 3.3 & 3.4]). For ease of notation, let (Σ , θ) refer to
the first return map to B if G contains parabolic elements and to (ΣA,Γ ) if G does not contain
parabolic elements. Observe that in both cases the potential is Hölder continuous with respect to
the shift metric, (Σ , θ) has the b.i.p.-property and can be identified with a maximal non-invertible
factor of a Poincaré section of the geodesic flow on the unit tangent bundle T 1(H/G) of H/G
(see [20]). Furthermore, since by construction B is bounded away from P , each return to the
associated Poincaré section in T 1(H/G) corresponds to a return to a ball of bounded diameter
with center o in H/G.
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Combining these observations, one then obtains the following relation between the finite
words of Σ , the elements of G and the hyperbolic distance d(o, g(o)). Let W n refer to the
words of length n of Σ and gw ∈ G to the element in G defined by θn

|[w] = gw. Note that,
by construction of Γ ,G is isomorphic to the finite words with respect to the original partition
α (see [20]). Hence, after a possible induction to B, the map W ∞

→ G, w → gw is injective.
Using the property of bounded returns, it follows that the map is almost onto in the sense that
there exists a finite subset J of G such that

G =


h∈J,w∈W ∞

hgw. (14)

For w ∈ W ∞, set Φw := supx∈[w] Φ|w|(x). As a further consequence of bounded returns, it then
follows that, for s > 0,

Φs
w ≍ e−sδd(o,gw(o)). (15)

Now assume that N is a normal subgroup of G and recall that in this situation, the manifold
H/N is called periodic with period G/N . Since H/N is a cover of H/G, it follows that H/N is
geometrically finite if and only if G/N is finite. The properties (15) and (14) above now allow
relating the exponents of convergence of N and G in terms of the amenability of G/N . Therefore,
recall that the Dirichlet series

P(H, s) :=


g∈H

e−sd(o,g(o))

is referred to as the Poincaré series of the Kleinian group H , and that its abscissa of convergence
δ(H) is called the exponent of convergence of H . In order to quantify P(N , s), we will now
employ our results on group extensions. In order to do so, for w ∈ W and x ∈ [w], set
ψ(x) := [gw] ∈ G/N and

T : Σ × G/N → Σ × G/N , (x, [g]) → (θ(x), [g]ψ(x)).

In here, we only will make use of the estimates on Ln(1X id), but it is worth noting that T is
related to the geodesic flow on the periodic manifold. That is, T is a non-invertible factor of the
base transformation of a Ambrose–Kakutani representation of the flow on the periodic manifold
(see also, e.g. [1,18]), where the associated measure is the Liouville–Patterson measure of G.

As an application of Theorems 4.1 and 5.4 we now obtain the following partial refinement of
a result of Brooks for convex-cocompact Kleinian groups in [3] to the class of essentially free
Kleinian groups.

Theorem 6.1. Let G be an essentially free Kleinian group and N ▹ G a normal subgroup. Then
δ(G) = δ(N ) if and only if G/N is amenable.

Proof. Set δ = δ(G) in the definition of ϕ and note that for this choice, the existence of a finite,
invariant measure implies that PG(θ, ϕ) = 0 (see, e.g., [20]). Furthermore, as a consequence of
(15) we have that ϕ is symmetric with respect to the involution generated by κ . Finally, it can
easily be deduced from the connection between the group extension T and the geodesic flow
on T 1(H/N ) that T is topologically transitive. Hence, Theorems 4.1 and 5.4 are applicable and
therefore, it remains to show that PG(T ) < PG(θ) if and only if δ(N ) < δ = δ(G).
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So assume that δ(N ) < δ. Hence, for ϵ > 0 with δ(N ) < (1 − ϵ)δ,P(N , (1 − ϵ)δ) < ∞. In
particular, applying (14) and (15) gives that

∞ >

g∈N

e−(1−ϵ)δ(o,g(o))
≍


w∈W ∞,
[gw ]=id

Φ1−ϵ
w ≥


w∈W ∞,
[gw ]=id

Φw∥ϕ∥
−ϵ|w|
∞ .

Since exp(−PG(T )) is the radius of convergence of


[gw]=id Φwx |w|, it follows from ∥ϕ∥∞ < 1
that PG(T ) ≤ ϵ log ∥ϕ∥∞ < 0 = PG(θ).

Now assume that PG(T ) < 0 and G does not contain parabolic elements. Then W is finite
and, in particular, ∥1/ϕ∥∞ < ∞. Since PG(T ) < 0, we have that, for 1 < x < exp(−PG(T )),

∞ >


w∈W ∞,
[gw ]=id

Φwx |w|
≥


w∈W ∞,
[gw ]=id

Φ1−ϵ
w x |w|

∥1/ϕ∥
−ϵ|w|
∞

≍


w∈W ∞,
[gw ]=id

e−(1−ϵ)δ(o,gw(o))x |w|
∥1/ϕ∥

−ϵ|w|
∞ . (16)

Hence, if ϵ < −PG(T )/ log(∥1/ϕ∥∞), then P(N , (1 − ϵ)δ) < ∞ and, in particular, δ(N ) < δ.
It remains to consider the case where PG(T ) < 0 and G contains parabolic elements. For

p ∈ P , let G p denote the stabiliser of p in G. By well known arguments (see, e.g., Lemma 3.2
in [21]), we have, for s > kp/2 and ℓ > 0, with kp referring to the Abelian rank of G p, that

g∈G p ,
d(o,g(o))≥2ℓ

e−sd(o,g(o))
≍


n≥eℓ

1

n2s−kp+1 ≍
1

2s − kp
eℓ(kp−2s).

Since δ(G) is always bigger than kp/2, we may choose 0 < ϵ < 1−kp(2δ)−1. For s = (1−ϵ)δ,
we then have

g∈G p ,
d(o,g(o))≥2ℓ

e−(1−ϵ)δd(o,g(o))
≍ e2ℓδϵ


g∈G p ,

d(o,g(o))≥2ℓ

e−δd(o,g(o)).

For Λ > 0, set WΛ := {w ∈ W 1
: infx∈[w] ϕ(x) ≥ Λ}. It follows from the inducing process of

θ , that gw ∈ G p for some p ∈ P and each w ∈ WΛ, if Λ > 0 is sufficiently small. The above
estimate then implies the following uniform Lipschitz continuity. There exists C ≥ 1 such that
for arbitrary families {xw : x ∈ [w], w ∈ WΛ},

w∈WΛ

ϕ(xw)1−ϵ


w∈WΛ

ϕ(xw)
− 1 ≤ Cϵ.

Combining the estimate with the argument in (16) then gives that δ(N ) < δ(G). �
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